CALCULATIONS FOR the CELESTIAL OBSERVATIONS that MERIWETHER LEWIS made at the THREE FORKS OF THE MISSOURI (Point of Observation No. 39 for 1805) July 28 - 29, 1805

FOREWORD

While Meriwether Lewis was at Camp Island near the Three Forks of the Missouri he spent many hours preparing for and taking celestial observations. From all those observations, however, the only calculations he made were for latitude from the sun's noon altitude, July 28 and 29. Lewis's calculated latitudes, unfortunately, are nearly 30 miles farther south than the true latitude of Camp Island Camp. This difference in latitude results from his using the wrong index error for the octant. The other observations were not calculated until nearly two hundred years after Lewis took them; those observations were:

1) two sets of a.m and p.m. Equal Altitudes of the sun to check the chronometer's time,

2) three sets of Lunar Distance observations for longitude (two with the sun, one with Antares) and,

3) three sets of observations (two with the sun, one with Polaris) to determine the variation of the compass needle or magnetic declination.

Before the advent of electronic calculators and computers all the mathematical operations would have been done "long hand." Multiplication, division, powers and roots would have been done by logarithms. All operations using trigonometric functions also would have been performed using logarithms. In addition, the procedures for making the calculations usually were set out in work-sheet forms in books that had been published by mathematicians trained in making the calculations. Thus, the person doing the calculations merely filled in the observational data in the proper places and followed the outlined procedure, step by step – often without understanding the why or wherefore of the mathematical operations.

All the calculations that follow were made using an electronic calculator in a non-program mode, and the operations are set out in step-by-step fashion to help the reader follow the complex operations.

The mathematician of the Lewis-and-Clark era would have used the Nautical Almanac for the year of observation. I also used the Nautical Almanacs for 1803 - 1806 even though there are several excellent computer programs that can recalculate – with greater accuracy and precision than often exists in the almanacs of the time – the needed celestial information. The mathematician of the Lewis-and-Clark era also would have used standard tables such as Tables Requisite to determine the corrections for refraction and parallax and would have used numerous other tables in them to facilitate the tedious, long-hand operations. I did not have access to Tables Requisite for the years of the expedition, but used modern formulae to obtain refraction and parallax and other needed parameters. In addition, because most of the navigation tables were designed for use at sea, they do not provide values for refraction at altitudes greater than about 2000 feet.

The calculations made from Lewis's celestial observations are given below in the following sequence despite the date or time in which they were made: 1) latitude from noon observation of the sun, 2) chronometer error at noon from Equal Altitudes observations, 3) chronometer time of an observation from any other observation for which the chronometer's time and sun's altitude is given, 4) longitude from Lunar Distance observations, and 5) magnetic declination.

LATITUDE CALCULATIONS

LATITUDE from MERIDIAN ALTITUDE of the SUN - JULY 28, 1805

At our encampment on Camp Island, near the junction of the three forks of the MissouriObserved meridian altitude of the ⊙'s lower limb with octant by back observation58°35'00"Latitude deduced from this observation45°24'54"

Calculations for Latitude from the Meridian Observation of the Sun – July 28, 1805

-	58°35' <u>04°23'20.6"</u> 54°11'39.4"	observed supplement of the double altitude of the sun's lower limb octant's index error in the back observation observed angle, corrected for Index error
- - + +	$\frac{180^{\circ}00'00.0"}{54^{\circ}11'39.4"}$ $\frac{54^{\circ}11'39.4"}{125^{\circ}48'20.6"}$ $\frac{2}{62^{\circ}54'10"}$ $\frac{100^{\circ}00'24"}{00^{\circ}00'04"}$ $\frac{00^{\circ}15'47"}{63^{\circ}09'37"}$ $\frac{18^{\circ}59'40"}{44^{\circ}09'57"}$	observed angle, corrected for Index error apparent double altitude of sun's lower limb using the artificial horizon doubles the angle observed, divide by 2 apparent altitude of sun's lower limb = H refraction correction ¹ parallax correction ² sun's semidiameter ³ altitude of sun's center with respect to earth's center sun's north declination at observation ⁴ co-latitude
-	90°00'00" <u>44°09'57"</u> 45°50'03" 45°50' 45°55½	zenith co-latitude latitude per this observation latitude as octant can be read only to ½' (30") of arc approximate actual latitude from Courses and Distances
Le	wis's method (u	sing correct index error and same corrections for refraction and parallax as a

58°35'	observed complement of the double altitude of the sun's lower limb
÷ 2	
29°17'30"	observed angle halved
90°	
<u>29°17'30"</u>	
60°42'30"	altitude of sun's lower limb including index error, refraction and parallax
<u>+2°11'40"</u>	one half of the octant's index error ⁵
62°54'10"	apparent altitude of the sun's lower limb = H
- 0°00'20"	refraction correction
<u>+0°15'47"</u>	sun's semidiameter
63°09'37"	
<u>18°59'40"</u>	sun's north declination
44°09'57"	co-latitude
<u>90°</u>	
45°50'03"	latitude per this observation

above)

1. Lewis would have used Tables Requisite. The equation used here to calculate the correction for refraction is: [(983 x Bar Pressure

in inches) ÷ (460 + Temp°F)] x cotangent H

2. Lewis likely used Tables Requisite. The equation used here to calculate the correction for the sun's parallax is: 8.794 x cosine H 3. Sun's noon semidiameter at 0° longitude: 25 July, 15'46.7"; 1 August, 15'47.5"

4. Sun's noon declination at 0° longitude: 28th, +19°04'00"; 29th, +18°50'01")

5. Lewis mistakenly used an index error of $2^{\circ}40'$; this accounts for most of the error in his calculations.

LATITUDE CALCULATIONS

LATITUDE from MERIDIAN ALTITUDE of the SUN - JULY 29, 1805

[At our encampment on Camp Island, near the junction of the three forks of the Missouri]	
Observed meridian altitude of the ${_{\odot}}$'s lower limb with octant by back observation	59°07'
Latitude deduced from this observation	45°23'23.1"
Mean latitude from two meridian altitudes of o's lower limb	45°24'08.5"

Calculations for Latitude from Meridian Observation of the Sun – July 29, 1805

_	59°07' 04°23'20.6"	observed supplement of the double altitude of sun's lower limb octant's index error in the back observation		
	54°43'39.4"	observed angle, corrected for Index error		
	180°00'00.0"			
	54°43'39.4"	observed angle, corrected for Index error		
	125°16'20.6"	apparent double altitude of sun's lower limb		
÷	2			
	62°38'10"	apparent altitude of sun's lower limb = H		
-	00°00'24"	refraction correction ¹		
+	00°00'04"	parallax correction ²		
+	00°15'47"	sun's semidiameter ³		
	62°53'37"	altitude of sun's center with respect to earth's center		
-	<u>18°45'36"</u>	sun's north declination at observation ⁴		
	44°08'01"	co-latitude		
	90°00'00"	zenith		
-	<u>44°08'01"</u>	co-latitude		
	45°51'59"	latitude per this observation		
	45°52'	latitude as octant can be read only to $\frac{1}{2}$ (30") of arc		
	45°55½'	approximate actual latitude from Courses and Distances		
avera	ge of recalculate	ed observations for 28 and 29 July 1805: 45°50'03" + 45°51'59" =	45°51'01"	
average of recalculated observations for 28 and 29 July to nearest 30" = 45°51'				
average latitude for 28 and 29 July 1805 as calculated by Lewis = 45°24'08.5				
		ave used Tables Requisite. The equation used here to calculate	the correction for	

1. Lewis would have used Tables Requisite. The equation used here to calculate the correction for refraction is: [(983 x Bar Pressure in inches) ÷ (460 + Temp°F)] x cotangent H

2. Lewis would have used Tables Requisite. The equation used here to calculate the correction for the sun's parallax is: 8.794 x cosine H

3. Sun's noon semidiameter at 0° longitude: 25 July, 15'46.7"; 1 August. 15'47.5"

4. Sun's noon declination at 0° longitude: 29th, +18°50'01"; 30th, +18°35'44")

CHRONOMETER ERROR at NOON from EQUAL ALTITUDES of the SUN – JULY 28, 1805 (page 1 of 2)

				Observed equa	l altitudes of \odot with sextant	
	h m	s	h m	S		
A.M.	8 42 ⁻	10 PM	4 21 46	accurate		
	8 43 4	12	4 23 21	doubtful	Altitude at the time of observation 72°0	08'15"
	8 45 -	15		lost by clouds		
		Calculatio	ons for Chr	onometer Error f	from Equal Altitudes of the Sun – July 28	3, 1805
	C	C - UL	LL - C	C - UL	LL = lower limb, C = center, UL = uppe	er limb
		8:43:42	lost	4:23:21		
<u>8:</u>	43:42	8:42:10	4:23:21	4:21:46		
0:	01:33	0:01:32	?	0:01:35	4:21:46 + 1m33s = 4:23:19 ce	nter
Avera	nae chr	onometer	time of the	e AM observatio	n (center only)	08h43m42s
	-			PM observation		16h23m19s
			ie + PM tim			12h33m30.5s
		•		time) ÷ 2 = 7h3	9m37s ÷ 2 =	03h49m48.5s
	•	,		,		
Latitu	Latitude of Point of Observation; average of observations July 28 and 29, nearest 30" 45°51' N ¹					
Sun's	Sun's declination; 0° long. noon: 28th: 19°04'00"; 29th: 18°50'01"; at noon 111° ² +18°59'41"					+18°59'41"
					center and center "corrected")	12h33m30.5s
	Change in declination; daily: -13.98'; hourly: -34.96"; correction for change ³ = $+$ 8.9s					
	Calculated chronometer time of Local Apparent Noon 12h33m39.4s					
	Local Apparent Time of Noon when sun is on the meridian <u>12h00m00.0s</u>					
Chronometer too fast on Local Apparent Time 33m39.4s						
Local Apparent Time of Noon when sun is on the meridian 12h00m00.0s						
Equation of Time at observation ⁴ + 6m04.1s						
Local Mean Time of Solar Noon 12h06m04.1s						
					12h33m39.4s	
	Chronometer too fast on Local Mean Time 27m35.3s					

1. True latitude: 45°54'44"

2. True longitude: 111°30'40"

3. Correction for change in declination either from: Bowditch, Nathaniel, 1837 (reprinted 1864), The New American Practical Navigator, E & G. W. Blunt, New York, p. 219-220 or Ingram, E.L., 1911, Geodetic Surveying, McGraw Hill Book Co., p. 176-179. See following page.

4. In the 1805 Nautical Almanac, find the Equation of Time for July 28 (+6m04.4s) and July 29 (+6m03.3s) then either ratio the values to the Greenwich Apparent Time of the observation of 19h24m [12h + (111 $^{\circ}$ + 15)] or use Table VI in Tables Requisite.

CHRONOMETER ERROR at NOON from EQUAL ALTITUDES of the SUN – JULY 28, 1805 (page 2 of 2)

Bowditch's Method for Correction for Sun's Changing Declination (modified to use without logs)

First part of the Correction =

180 ÷ $[0.066667 \text{ x cotangent Latitude x sine} (\frac{1}{2} \text{ ET x 15}) \text{ x } (180 ÷ \text{ ET}) \text{ x } (180 ÷ \text{ Declin change per day})]$ 180 ÷ $[0.066667 \text{ x cotangent } 45^{\circ}51^{\circ} \text{ x sine} (7h39m37s \text{ x } 7.5) \text{ x } (180 ÷ 7h39m37s) \text{ x } (180 ÷ 13.98^{\circ})]$ 180 ÷ [0.066667 x 0.970752 x 0.842942 x 23.497842 x 12.875536] = 16.504692 = 10.91s

Second part of the Correction =

180 ÷ [0.066667 x cotangent Declin x tangent (½ ET x 15) x (180 ÷ ET) x (180 ÷ Dec change per day)] 180 ÷ [0.066667 x cotangent 18°59'41" x tan (7h39m37s x 7.5) x (180 ÷ 7h39m37s) x (180 ÷ 13.98')] 180 ÷ [0.066667 x 2.905080 x 1.566792 x 23.4978420 x 12.875536] = 91.789903 = 1.96s

where ET = Elapsed Time

The first part of the correction is to be added to the Middle Time when the Sun is receding from the elevated pole (June 22-December 21 in the Northern Hemisphere) and subtracted from the Middle Time when it is advancing toward it (December 22 - June 21 in the Northern Hemisphere)... +10.9s

The second part of the correction is to be added to the Middle Time when the Declination is increasing (December 22 - June 21), but subtracted from the Middle Time when it is decreasing (June 22- December 21)... -2.0s

Net correction for changing declination = +10.9s - 2.0s = +8.9s

Ingram's Method – modified (correction to be subtracted from the middle time)

{[tan Lat \div sin (½ ET x 15)] - [(tan Dec \div tan (½ ET x 15)]} x [(Δ Dec \div 15) x ½ ET]

where: Lat = latitude

ET = elapsed time

Dec = sun's declination

 Δ Dec = hourly change in sun's declination

- 1 {[tan 45°51' ÷ sine (3h49m48.5s x 15)] [tan 18°59'41" ÷ tan (3h49m48.5s x 15)]} x [(-34.96 ÷ 15) x 3h49m48.5s]
- 2 [(1.030120 ÷ sine 57.452083) (0.344225 ÷ tan 57.452083)] x (-2.330667 x 3h49m48.5s)
- 3 (1.030120 ÷ 0.843942) (0.344225 ÷ 1.566792)
- 4 (1.222053 0.219700) x -8.926777
- 5 1.002353 x 9.926777 = -8.9 seconds (subtract a minus 8.9 sec = add 8.9 seconds)

CHRONOMETER ERROR at NOON from EQUAL ALTITUDES of the SUN – JULY 29, 1805 (page 1 of 2)

Observed equal altitudes of the sun with sextant

Obsei				lan		
	hms		hms			
A.M.	8 57 05.5	P.M.	4 05 50			
	8 58 41		4 07 24	Altitude by sextant at the time of obser	vation 77°04'45"	
	9 00 14		4 08 59			
	Calculatio	ons for Chi	ronometer Er	ror from Equal Altitudes of the Sun – July 2	9, 1805	
9:0 <u>8:5</u> 0:0	- C C - LL 00:14 8:58:41 <u>58:41 8:57:05.</u> 01:33 0:01:36. 00:14 - 8:57:05.	5 0:01:	594:0244:0350:0	UL 7:24 LL = lower limb, C = center, U <u>5:50</u> 1:34 59 - 4:05:50 = 3m09s	L = upper limb	
Avera Middle	Average chronometer time of the AM observation (UL and LL only)08h58m39.75sAverage chronometer time of the PM observation (UL and LL only)16h07m24.5sMiddle time = (AM time + PM time) ÷ 2 =12h33m02.13s½ Elapsed time = (PM time - AM time) ÷ 2 = 7h08m44.75s = ÷ 2 =03h34m22.37s					
	Latitude of the Point of Observation ¹ ; average of observation July 28th and 29th45°51'N ¹ Sun's declination; 0° long. noon; 29th: 18°50'01"; 30th: 18°35'44"; at Noon 111° ² +18°45'37"					
Chang Calcul Local	Middle time of the observation by chronometer12h33m02.2sChange in declination; daily: -14.28'; hourly: -35.71"; correction for change³ =+8.8sCalculated chronometer time of Local Apparent Noon12h33m11.0sLocal Apparent Time of Noon when sun is on the meridian-12h00m00.0sChronometer too fast on Local Apparent Time33m11.0s					
Equation of Time4+ 6m02.Local Mean Time of Solar Noon12h06m02.Chronometer time of Local Apparent Noon12h33m11					12h00m00.0s <u>+ 6m02.8s</u> 12h06m02.8s <u>12h33m11.0s</u> 27m08.2s	
Da	te Chronomet Local Appa		Chronomete Local Mean			
28	0h33m39.4	S	0h27m35.3	S		

the above data show that the chronometer was losing about 27 seconds per day on Local Mean Time = 1.125 seconds per hour. The calculations made for time of observation using latitude, sun's altitude (index error 8'45") and sun's declination, however, suggest that, between observations, the chronometer was losing about 2.5s/hr (60 seconds per day), see Local Time - Summary

1. True latitude: 45°55'44" N.

29

2. True longitude: 111°30'40" W

0h33m11.0s

0h00m28.4s

3. See footnote 3 for Local Time Calculations, 1805 July 28 and page 2 of 2 for that observation.

0h27m08.2s

0h00m27.1s

4. See footnote 4 for Local Time Calculations, 1805 July 28. Equation of Time at 0° longitude noon on 29 July: +6m03.3s; 30 July: +6m01.6s

TIME of EQUAL ALTITUDES OBSERVATIONS from LATITUDE and SUN'S DECLINATION and ALTITUDE JULY 28, 1805 (page 1 of 1)

True Altitude of Sun's Center

8:43:42 - estimated 34m fast = 8:10 + 7:24 = 15:34; 16:23:21 - est. 33m30s fast = 15:48 + 7:24 = 23:12

AM		PM
72°08'15"	observed double altitude of sun's center	72°08'15"
<u>00°08'45"</u>	index error	<u>00°08'45"</u>
71°59'30"	double altitude corrected for index error	71°59'30"
÷ 2		÷ 2
35°59'45"	apparent altitude of center = H	35°59'45"
- 0°01'08"	refraction (see Latitude, footnote 1)	- 0°01'04"
<u>+0°00'07"</u>	parallax (see Latitude, footnote 2)	<u>+0°00'07"</u>
35°58'44"	altitude of sun's center per this observation	35°58'48"

Sun's declination at noon 0° longitude; 28th; 19°04'00"; declination 29th: 18°50'01" Sun's declination at observation (111° W); AM = 19°01'55"; PM = 18°57'28"

Local Apparent Time of AM Observation – July 28, 1805 A = Latitude (average of Lewis's two Meridian Altitude observations) = $45^{\circ}51'$ = B = True altitude of sun's center (AM) = $35^{\circ}58'44"$ = C = (A + B) ÷ 2 = D = B - C (absolute) = E = ½ polar distance (90° - declination) = ½ (90° - 19°01'55") = ½ 70.968056° = F = tangent ⁻¹ cotangent C x tangent D x cotangent E = = tangent ⁻¹ 1.153844 x 0.086355 x 1.402775 = 0.139773 =	45.850000° 35.978889° 40.914444° 04.935556° 35.484028° 07.956877°
$G = E \pm F = 35.483960^{\circ} - 7.957212^{\circ 1}$	27.527151°
H = cosine ⁻¹ tangent A x tangent G ² = $1.030120 \times 0.521169 = 0.536867 =$	57.529390°
$I = 12 - (H \div 15) = 57.529390^{\circ} \div 15 = Hour Angle^{h} = 12 - 3.835293h = LAT of obs$	08:09:53.0
Chronometer fast on Local Apparent Time: 8:43:42.0 - 8:09:53.0 =	33m49.0s
Chronometer fast on Local Mean Time: 8:43:42 - (8:09:53 + 6m04.2s) =	27m44.8s
Local Apparent Time of PM Observation – July 28, 1805	
A = Latitude (average of Lewis's two Meridian Altitude observations) = 45°51'01" =	45.850000°
B = True altitude of sun's center (PM) = 35°58'48" =	35.980000°
$C = (A + B) \div 2 =$	40.915000°
D = B - C (absolute) =	04.935000°
E = $\frac{1}{2}$ polar distance (90° - declination) = $\frac{1}{2}$ (90° - 18°57'28") = $\frac{1}{2}$ 71.042222° =	35.521111°
F = tangent ¹ cotangent C x tangent D x cotangent E =	
= tangent ¹ 1.153821 x 0.086346 x 1.400856 = 0.139564 =	07.945090°
$G = E \pm F = 35.521111^{\circ} - 7.945090^{\circ 1}$	27.576022°
$H = cosine^{-1}$ tangent A x tangent G ²	
cosine ⁻¹ 1.030120 x 0.522255 = 0.537985 =	57.453445°
$I = 12 + (H \div 15) = 57.453445^{\circ} \div 15 = Hour Angle^{h} = 12 + 3.830230h = LAT of obs$	15:49:48.8
Chronometer fast on Local Apparent Time: 16:23:19.0 - 15:49:48.0 =	33m30.2s
Chronometer fast on Local Mean Time: 16:23:19 - (15:49:48 + 6m03.9s)	27m27.1s

Average of AM and PM, Local Apparent Time =33m39.6s, by Equal Altitudes at noon = 33m39.4sAverage of AM and PM, Local Mean Time =27m36.0s, by Equal Altitudes at noon = 27m35.3s

^{1.} Subtract when A is greater than B, otherwise add.

^{2.} Take the supplement to 180° when F is greater than E

TIME of AM MAGNETIC OBSERVATION from LATITUDE and SUN'S DECLINATION and ALTITUDE JULY 29, 1805 (page 1 of 1)

⊙'s magnetic azimuth				
Time by chrono- meter	Azimuth by circumferentor	Altitude of o's lower limb with sextant		
hms A.M. 84809 <u>85357</u>	N 85 E N 86 E	73 00 00 74 58 15		

Calculations for Magnetic Declination from AM Observations with the Sun – July 29, 1805

Recalculated latitude (observations of 1805 July 28 and 29) =	45°51'N
Average time by chronometer: 8:48:09 am + 8:53:57 am = 17:42:06 ÷ 2 =	8:51:03
Calculated Local Apparent Time = 8:51:03 - estimated 33m fast =	8:18
Greenwich Apparent Time = Calculated Local Apparent Time + $111^{\circ} \div 15^{\circ} = 7:24 =$	15:42
Sun's declination; 29th: 18°50'01"; 30th: 18°35'44"; at 15:42 Greenwich App Time =	18°47'49"

observed double altitude of sun by sextant
sextant's index error
apparent altitude = H
refraction (see Latitude, footnote 1)
parallax (see Latitude, footnote 2)
sun's semidiameter (Jul 25: 15'46.7"; Aug 1: 15'47.5", at obs at 111° = 15'47.2")
altitude of sun's center per this observation

Time of Magnetic Declination Observation from Declination, Altitude and Latitude

A = Latitude	45.850000°	
B = True altitude sun's center	37.166667°	(37°10'00")
$C = (A + B) \div 2$	41.508333°	
D = B - C (absolute)	04.341667°	
E = ½ polar distance	35.601528°	½ of (90° - 18°47'49")
F = tan ⁻¹ cot C x tan D x cot E	06.832705°	
$G = E \pm F (-if A > B)$	28.768822°	
H = cos ⁻¹ tan A x tan G	55.557191°	
I = H ÷ 15 = Hour angle	03.703813h =	3:42:13.7
LAT = 12 - I = 12 - 3.703813 =	08.296187h =	8:17:46.3 Local Apparent Time of observation ave
Chronometer time (average)	08.850833h =	<u>8:51:03.0</u>
Chronmeter fast LAT at observation	00.554328h =	0:33:16.7 seconds
Chronometer fast LMT at observation =	8:51:03 - (8:17:	46.3 + 6m04.2s) = 27m12.5s

TIME of AM EQUAL ALTITUDES OBSERVATION from LATITUDE and SUN'S DECLINATION and ALTITUDE JULY 29, 1805 (page 1 of 1)

Observed equal altitudes of the sun with sextant

	hms		hms	
A.M.	8 57 05.5	P.M.	4 05 50	
	8 58 41		4 07 24	Altitude by sextant at the time of observation 77°04'45"
	9 00 14		4 08 59	

True Altitude of Sun's Center

AM	
77°04'45"	altitude by sextant at the time of observation
<u>-0°08'45"</u>	sextant's index error
76°56'00"	
÷ 2	
38°28'00"	Н
- 0°01'01"	refraction (see Latitude, footnote 1)
<u>+0°00'07"</u>	parallax (see Latitude, footnote 2)
38°27'06"	altitude of sun's center per this observation

Recalculated latitude (observations of 1805 July 28 and 29) =	45°51'N
Average time by chronometer AM =	8:58:39.75
Calculated Local Apparent Time = 8:58:40 - estimated 33m fast =	8:26
Greenwich Apparent Time = Calculated Local Apparent Time + 111° ÷ 15° = 7:24 =	15:50
Sun's declination; Jul 29: 18°50'01"; Jul 30: 18°35'44"; at 15:50 Greenwich App Time =	18°47'44"

Time of AM Observation from Declination, Altitude and Latitude

A = Latitude	45.850000°			
B = True altitude sun's center	38.451667°	(38°27'06")		
$C = (A + B) \div 2$	42.150833°			
D = B - C (absolute)	03.699167°			
E = ½ polar distance	35.602222°	½ of (90° - 18°47'44")		
F = tan ⁻¹ cot C x tan D x cot E	05.696807°			
$G = E \pm F$ (- if $A > B$)	29.905415°			
H = cos ⁻¹ tan A x tan G	53.667188°			
I = H ÷ 15 = Hour angle	03.577813h =	03:34:40.1		
LAT = 12 = I = 12 - 3.577813 =	08.422187h =	08:25:19.9 Local Apparent Time of obs ave		
Chronometer time (average)	08.977824h =	08:58:40.2		
Chronometer fast LAT at observation	00.555497h =	00:33:20.3 seconds		
Chronometer fast LMT at observation = 8:58:40.2 - (8:25:19.9 + 6m03.0s) = 27m17.3s				

Using an index error of 8' makes the chronometer 33m18.0s fast on LAT for this observation Using an index error of 7' makes the chronometer 33m14.9s fast on LAT for this observation

TIME of PM EQUAL ALTITUDES OBSERVATION from LATITUDE and SUN'S DECLINATION and ALTITUDE JULY 29 1805 (page 1 of 1)

Observed equal altitudes of the sun with sextant

A.M.	h m s 8 57 05.5	P.M.	h m s 40550	
	8 58 41		4 07 24	Altitude by sextant at the time of observation 77°04'45"
	9 00 14		4 08 59	

True Altitude of Sun's Center

	The Allinde of Sull's Celler
PM	
77°04'45"	altitude by sextant at the time of observation
-0°08'45"	sextant's index error
76°56'00"	
÷ 2	
38°28'00"	
- 0°00'59"	refraction (see Latitude, footnote 1)
+0°00'07"	parallax (see Latitude, footnote 2)
38°27'08"	altitude of sun's center per this observation

Recalculated latitude (observations of 1805 July 28 and 29) =	45°51'N
Average time by chronometer PM =	16:07:24.5
Calculated Local Apparent Time = 16:07:24.5 - estimated 33m fast =	15:34
Greenwich Apparent Time = Calculated Local Apparent Time + 111° ÷ 15° = 7:24 =	22:58
Sun's declination; Jul 29: 18°50'01"; Jul 30: 18°35'44"; at 22:58 Greenwich App Time =	18°43'29"

Time of PM Observation from Declination, Altitude and Latitude

A = Latitude	45.850000°			
B = True altitude sun's center	38.452222°	(38°27'08")		
$C = (A + B) \div 2$	42.151111°			
D = B - C (absolute)	03.698889°			
E = ½ polar distance	35.637639°	½ of (90° - 18°43'29")		
F = tan ⁻¹ cot C x tan D x cot E	05.688942°			
$G = E \pm F (-if A > B)$	29.948697°			
H = cos ⁻¹ tan A x tan G	53.593468°			
I = H ÷ 15 = Hour angle	03.572898h =	03:34:22.4		
LAT = 12 = I = 12 + 3.572898 =	15.572898h =	15:34:22.4 Local Apparent Time of obs ave		
Chronometer time (average)	16.123426h =	<u>16:07:24.3</u>		
Chronometer fast LAT at observation	00.550531h =	00:33:01.9 seconds		
Chronometer fast LMT at observation = 16:07:24.3 - (15:34:22.4 + 6m02.5s) = 26m59.4s				

TIME (AVERAGE) of PM MAGNETIC DECLINATION OBSERVATIONS from LATITUDE and SUN'S DECLINATION and ALTITUDE JULY 29, 1805 (page 1 of 1)

	Time	Azimuth	Altitude (lower limb)
P.M.	5 07 47	S 72 W	55 44 30
	5 13 04	S 73 W	53 52 45

Altitude of the Sun's Center

54°48'37.5"	average double altitude of sun's lower limb + index error
<u>-0°08'45"</u>	sextant's index error
54°39'52.5"	double altitude
÷ 2	
27°19'56"	apparent altitude = H
- 0°01'30"	refraction (see Latitude, footnote 1)
+0°00'08"	parallax (see Latitude, footnote 2)
<u>+0°15'47"</u>	semidiameter; 0° longitude at noon Jul 25: 15'46.7"; Aug 1: 15'47.5"
27°34'21"	altitude of sun's center per this observation

Recalculated latitude (observations of 1805 July 28 and 29) =	45°51'N
Average time by chronometer PM =	17:10:25.5
Calculated Local Apparent Time = 17:10:25.5 - estimated 33m fast =	16:37
Greenwich Apparent Time = Calculated Local Apparent Time + 111° ÷ 15° = 7:24 =	24:01
Sun's declination; Jul 29: 18°50'01"; Jul 30: 18°35'44"; at 22:58 Greenwich App Time =	18°42'52"

Calculated Local Apparent Time of PM Magnetic Declination Observation

A = Latitude (average of Lewis's two Meridian Altitude observations) = 45°51' =	45.850000°
B = True altitude of sun's center (average) = 27°34'21"	27.572500°
$C = (A + B) \div 2 =$	36.711250°
D = B - C (absolute) =	09.138750°
E = $\frac{1}{2}$ polar distance (90° - declination) = $\frac{1}{2}$ (90° - 18°42'52") =	35.642778°
F = tangent ⁻¹ cotangent C x tangent D x cotangent E =	
= tangent ⁻¹ 1.341053 x 0.160868 x 1.394584 = 0.300857 =	16.744274°
$G = E \pm F = 35.642778^{\circ} - 16.744274^{\circ 1} =$	18.898504°
$H = cosine^{-1}$ tangent A x tangent G^2	
cosine ⁻¹ 1.030120 x 0.342347 = 0.352659 =	69.349978°
I = 12 + (H ÷ 15) = 69.349978° ÷ 15 = Hour Angle ^h = 12 + 4.623332 = LAT of obs	16:37:24.0
Chronometer too fast on Local Apparent Time = 17:10:25.5 - 16:37:24.0 =	33m01.5s
Chronometer too fast on Local Mean Time - 17:10:25.5 - (16:37:24 + 6m02.4s) =	26m59.0s

1. Subtract when A is greater than B, otherwise add.

2. Take the supplement to $180\,^\circ$ when F is greater than E.

SUMMARY of OBSERVATIONS TAKEN and TIMES, THREE FORKS of the MISSOURI JULY 28-29, 1805 (page 1 of 1)

Day Obs	Chrono	Chrono fast	True LAT	GAT of	Equation	GMT of
	Time	on LAT	of Obs	Obs +7:24	of Time	Obs
28 =Alt⊙AM	12:33:39.4	00:33:49.0	08:09:53.0	15:33:53.0	+06m04.2s	15:39:57.2
28 ⊙ noon		00:33:39.4	12:00:00.0	19:24:00.0	+06m04.1s	19:30:04.1
28 =Alt⊙PM		00:33:30.2	15:49:48.8	23:13:48.8	+06m03.9s	23:19:52.6
29 ⊙ Magav	08:51:03.0	00:33:16.7	08:17:46.3	15:41:46.3	+06m03.0s	15:47:49.3
29 =Alt⊙AM	08:58:40.2	00:33:20.3	08:25:19.9	15:49:19.9	+06m03.0s	15:55:22.9
29 ⊙ noon	12:33:11.0	00:33:11.0	12:00:00.0	19:24:00.0	+06m02.8s	19:30:02.8
29 =Alt⊙PM	16:07:24.3	00:33:01.9	15:34:22.4	22:58:22.4	+06m02.5s	23:04:24.9
29 ∍-⊙1	16:23:12.6	00:33:06.4 ¹	15:50:06.2	23:14:06.2	+06m02.5s	23:20:08.7
29	16:23:12.6	00:33:01.9 ²	15:50:10.7	23:14:10.7	+06m02.5s	23:20:13.2
	16:49:09.6	00:33:05.9 ¹	16:16:03.7	23:40:03.7	+06m02.5s	23:46:06.2
	16:49:09.6	00:33:00.9 ²	16:16:08.7	23:40:08.7	+06m02.5s	23:46:11.2
	20:57:26.8	00:33:01.5	16:37:24.0	24:01:24.0	+06m02.5s	00:07:26.5 30th
	20:57:26.8	00:33:00.9 ¹	20:24:25.9	27:48:25.9	+06m02.2s	03:54:28.1 30th
	20:57:26.8	00:32:51.3 ²	20:24:35.5	27:48:35.5	+06m02.2s	03:54:37.7 30th
	21:27:00	00:33:00.4 ¹	20:53:59.6	28:17:59.6	+06m02.2s	04:24:01.8 30th
29 Polaris	21:27:00	00:32:49.8 ²	20:54:10.1	28:18:10.1	+06m02.2s	04:24:12.3 30th

Note: values in red were determined for noon from the Equal Altitudes observations for those days Note: values in blue were derived from Patterson's Form III for finding the time of observation given the latitude, sun's altitude and sun's declination.

The trend from the AM and PM Equal Altitudes calculations (only) each day appears to show a loss of 2.46 seconds per hour = 59 seconds per 24h, yet the loss between noon 28th and noon 29th is only half that = 28.5 seconds. This difference may result from a change in the sextant's index error from +8'45" to some other value (need to check) or from improper winding of the chronometer. Lewis (22 July 1804) indicates the chronometer was wound at noon, but did he change that to evening after leaving Fort Mandan, inasmuch as the chronometer appears to have lost only 10 seconds between the PM Equal altitudes observation of 28 July and the AM Equal altitudes of 29 July per calculated Local Apparent Time of observation.

Obs	=	Observation
Chrono	=	Chronometer
LAT	=	Local Apparent Time
GAT	=	Greenwich Apparent Time
GMT	=	Greenwich Mean Time
= Alt	=	Equal Altitudes of the Sun
\odot	=	Sun
Mag	=	Magnetic Declination with Sun
⊅	=	Moon (Lunar Distance)
Polaris	=	Magnetic Declination with Polaris

1. Calculated from chronometer's noon error 28th and 29th from the Equal Altitudes observations then projecting by linear regression using the error on Local Mean Time and converting back to LAT.

2. Calculated by linear regression from 1) the calculated Local Apparent Time of AM and PM observations of Equal Altitudes on the 29th and the noon error on the 29th, 2) the same as in (1) above plus the calculated LAT of the AM and PM observations for Magnetic declination. Then both (1) and (2) were averaged.

LONGITUDE from LUNAR DISTANCE from THE SUN – FIRST SET of OBSERVATIONS July 29, 1805 (page 1 of 5)

Obsei	veu time anu		S Hearest Linus	
	Time	Distance	Time	Distance
	hms	o I II	hms	o I II
P.M.	4 14 42	49 43 30	4 23 12	49 46 30
	4 17 24	49 44 00	4 24 14	49 46 45
	4 19 34	49 44 45	4 25 18	49 47 00
	4 21 12	49 45 00	4 26 26	49 47 15
	4 22 09	49 45 54 ²	4 27 24	49 47 30

Observed time and Distance of \odot 's and \triangleright 's nearest Limbs with Sextant. \odot West

1. This should have been 49°45'52.5" because the sextant could be read only to the nearest 7½"

Calculations for Longitude from Lunar Distance from the Sun, first set of observations - July 29, 1805

Average time by chronometer time: 4:22:09.5; average separation by sextant: $49^{\circ}45'48.75"$. A plot of the data, however, suggests using 4:23:12.6 p.m. and $49^{\circ}46'12.2"$ as averaged from data sets 2, 3, and 5 through 10.

True Time of Sun-Moon Observation No. 1 (see LOCAL TIME CALCULATIONS - Summary)

Ave chrono	fast on LAT	True LAT	111°W	G App Time	Eq of Time	G Mean Time
16:23:12.6	00:33:06.4	15:50:06.2	+7h24m	23:14:06.2	+06m02.5s	23:20:08.7

Sun - Moon Data from Nautical Almanac Calculated for average time of first set of observations

RA Sun 29th	8h32m49.6s	Dec Sun 29th	+18°50'01" N	SD Sun 25th	15'46.7"
RA Sun 30th	8h36m44.5s	Dec Sun 30th	+18°35'44" N	SD Sun 32nd	15'47.5"
RA Sun obs	8h34m39.6s	Dec Sun obs	+18°43'20" N	SD Sun obs	15'47.2"
RA Moon 29th 1	l2h 168°36'	= 11h14m24s	Dec M	oon 29th 12h	0°12' S
RA Moon 29th 2	24h 174°48'	= 11h29m12s	Dec M	oon 29th 24h	3°08' S
RA Moon at obs	s 174°24'	= 11h37m36s	Dec M	oon at obs	-2°56'47"
SD Moon 29th 1	l2h 15'59"	HP Moon 29th 1	l2h 58'40"	Eq of	Time 29th +6:03.3
SD Moon 29th 2	24h 15'52"	HP Moon 29th 2	24h 58'12"	Eq of	Time 30th +6:01.6
SD Moon at obs	s 15'52"	HP Moon at obs	58'14"	Eq of	Time obs +6:02.5

RA = right ascension

Dec = declination

SD = semidiameter

HP = horizontal parallax

Eq = equation

obs = observation

LONGITUDE from LUNAR DISTANCE from the SUN – FIRST SET of OBSERVATIONS JULY 29, 1805 (page 2 OF 5)

True Altitude of the Sun's center at the time of Sun-Moon, first set of observations – July 29, 1805

А	=	Latitude: average from meridian observations July 28 and 29 (to nearest 30") =	45°51'00"
В	=	Sun's Declination at the time of the observation	18°43'20"
С	=	Sun's Hour Angle at the time of the observation 3:50:06.2 x 15 =	57°31'33"
D	=	tangent ⁻¹ of tangent B x secant C =	
	=	tangent ⁻¹ of (0.338914 x 1.862477) = 0.631219 =	32.260900°
E ¹	=	A ± D =	13.589100°
F		sine ⁻¹ of (sine B x cosecant D x cosine E)	
	=	sine ⁻¹ of (0.320980 x 1.873447 x 0.972006) = 0.584506 = True Alt (Hc) =	35.768073°
			35°46'05"

1. Add if Declination and Latitude are of different signs or C is greater than 90 $^\circ)$

Apparent ("observed") Altitude of the Sun's Center

$ \begin{array}{llllllllllllllllllllllllllllllllllll$					
H = 1) 35.768073° + (cot 35.768073° x 0.013287) - (cos 35.768073° x 0.002407) = 2) 35.784565° - (cot 35.784565° x 0.013287) + (cos 35.784565° x 0.002407) = 3) 35.768084° - 35.768073°(Hc) = +0.000011° 4) 35.784565° - 0.000011° = 35.784554° = Ha2	35.784565° (Ha1) 35.768084°				
5) 35.784554° - (cot 35.784554° x 0.01327) + (cos 35.784554° x 0.002407) = Therefore the sun's apparent altitude (Ha) = Δh_{\odot} = 35.784554° - 35.768073° = 0.016481°	35.768073° = Hc 35.784554° 35°47'04"				
Moon's Hour Angle at Time of Observation					
 Sun's Right Ascension at the time of the observation Local Apparent Time of the observation, pm = Sum = Right Ascension of the Meridian at time of observation Moon's Right Ascension at time of the observation = Moon's Hour Angle in Time 	08h34m39.6s <u>03h50m06.2s</u> 12h24m45.8s <u>11h37m36.0s</u> 00h47m09.8s				
True Altitude of the Moon's Center					
 A = Latitude: from meridian observations July 28 and 29 (rounded to nearest 30") = B = Moon's Declination at the observation C = Moon's Hour Angle as an angle = 47m09.8s (use 47m10s) x 15 = D = cotangent⁻¹ (cotangent B x cosine C) 	45°51'00" -02°57' 11°47'30"				
= \cotangent^{-1} (-19.405133 x 0.978897) = -18.995629 = E ¹ = A ± D	-3°00'48.5"				
= 45°51'3°08'48.5" =	48°51'48.5"				
F = cosecant ⁻¹ of (cosecant B x sine D x secant E) = cosecant ⁻¹ of (-19.430882 x -0.052571 x 1.520091) = -1.552771 = True alt (Hc)	40.091486° 40°05'29"				

1. Add if Declination and Latitude are of different signs or C is greater than 90°

LONGITUDE from LUNAR DISTANCE from the SUN – FIRST SET of OBSERVATIONS JULY 29, 1805 (page 3 of 5)

Apparent ("observed") Altitude of Moon's Center

Moon's Augmentation, Sun-Moon Observation No. 1

Augmentation = (sine Ha x ɔ's SD) ÷ 60 = (sine 39°21'26" x 15'52") ÷ 60 = 0.002795° = 10.1"

Apparent Angular Distance of Sun and Moon

(Sextant distance - index error + sun's semidiameter + moon's semidiameter + moon's augmentation)

- 49°46'12" average distance by sextant
- <u>- 0°08'45"</u> sextant's index error
- 49°37'27" average distance corrected for index error
- +0°15'47" sun's semidiameter
- +0°15'52" moon's semidiameter
- +0°00'10 moon's augmentation
- 50°09'16" apparent sun-moon separation; 50.183875 at IE 7'; 50.175531 at 7'30"; 50.167198 at 8'

LONGITUDE from LUNAR DISTANCE from the SUN – FIRST SET of OBSERVATIONS JULY 29, 1805 (page 4 of 5)

True separation of the Sun and the Moon, first set of observations – July 29, 1805

Patterson, Form V (modified)

		Apparent separation of moon's center from sun's center	50°09'16"
B		Apparent altitude of moon's center	39°21'26"
С		Apparent altitude of sun's center	35°47'04"
D		½ (B + C) =	37°34'15"
		C ~ D =	01°47'11"
F	=	A ÷ 2 =	25°04'38"
G	=	tangent-1 of (tangent D x cotangent E x tangent F) =	
		tangent-1 of (0.769293 x 32.063126 x 0.467950) =	
		tangent-1 of 11.542415	85°02'54"
H ²	=	F ± G = 25°04'38" - 85°02'54" =	59°58'16"
1 ³		$F \pm G = 25^{\circ}04'38'' + 85^{\circ}02'54'' =$	110°07'32"
Κ	=	180 ÷ moon's horizontal parallax = 180 ÷ 58'14" = (58.23') =	3°05'28"
L	=	180 ÷ (cosecant B x tangent I x K) =	
		180 ÷ [(1.576906 x -2.736594 x 3°05'28") = 13.339227] = -13.494035 =	00°13'30"
Μ	=	refraction of I = ref (180°- I) $70°$ = (from tables)	00°00'18"
Ν	=	L-M = 13'30" - 18" = 1st correction =	00°13'12"
0 ⁴	=	A ± N = 50°09'16" - 13'12" =	49°56'04"
Р	=	refraction and parallax of H for sun =	
		r of 60° (from tables)=	00°00'27"
Q ⁵		O ± P = 49°56'04" + 27" =	49°56'31"
		correction from Table XIII (Tables Requisite)	00°00'04"
		true distance = $Q \pm R = 49^{\circ}56'31'' + 4'' =$	49°56'35"
		preceding distance in Nautical Almanac (21h) =	48°45'25"
U ⁸	=	following time in Nautical Almanac (24h) =	50°20'29"

Calculating the Longitude

		- J · · · ·
48°45'25" x ₁ ; 21h y ₁		
49°56'35" >	23h14m44.8s	
50°20'29" x₂, 24h y₂,	15h50m06.2s	average Local Apparent Time of observation
	07h24m38.6s	difference in time
	x 15	
	111°09'39" W	111°10' W (should be 111°30'40")

1. The symbol ~ means "absolute value".

2. Add (+) if C is greater than B, if not subtract (-); therefore F - G.

5. Add (+) if H or I is greater than 90 $^{\circ};$ or H is less than I; therefore O + P

6. In Table VII find the correction of moon's altitude, then in Table XIII under the nearest degree to Q at the top, find two numbers; one opposite to the nearest minute to moon's correction of altitude found as above, and the other opposite the nearest minute to first correction (N) and the difference of these two numbers will be the third correction. This correction may, without sensible error, be generally omitted.

7. Add (+) if Q is less than 90°, if not, subtract (-) = Q + R

8. T and U; These are to be found in Nautical Almanac from page 8th to page 11th of the month opposite the day of the month and the sun or star from which the moon's distance was observed; taking out the two distances, which are next greater and next less than the true distance (S) calling that the <u>preceding distance</u> which comes first in the order of time and the other the <u>following distance</u>)

^{3.} Subtract (-) if C is greater than B, if not add (+); therefore F + G.

^{4.} Subtract (-) if H or I is greater than 90°; or H is greater than I; therefore A - N.

LONGITUDE from LUNAR DISTANCE from the SUN – FIRST SET of OBSERVATIONS JULY 29, 1805 (page 5 of 5)

True separation of the Sun and the Moon, first set of observations - July 29, 1805

Jean Borda's Method (1787), modified to use RPN calculator

A = \supset 's Apparent Altitude =	39°21'26"	m
B = \odot 's Apparent Altitude =	35°47'04"	s
C = Apparent Distance =	50°09'16"	d
D = \supset 's True alt =	40°05'29"	M
E = \odot 's True alt =	35°46'05"	S
$F = (A + B + C) \div 2 = G = (A + B - C) \div 2 = H = (D + E) \div 2 =$	62°38'53" 12°29'37" 37°55'47"	(m + s + d) ÷ 2 (m + s - d) ÷ 2 (M + S) ÷ 2

I = cosine⁻¹ $\sqrt{-}$ secant A x secant B x cosine D x cosine E x cosine F x cosine G = cosine⁻¹ $\sqrt{-}$ 1.293314 x 1.232707 x 0.765017 x 0.811390 x 0.459455 x 0.976320 = = cosine⁻¹ $\sqrt{-}$ 0.443915 = cosine⁻¹ of 0.666270 = 48°13'13"

J = sine (I + H) = sine 86°09'00" = 0.997668

K = sine (I - H) = sine $10^{\circ}17'25.6'' = 0.178638$

L = sine⁻¹ $\sqrt{(J \times K)}$ = sine⁻¹ $\sqrt{-0.178221}$ = sine⁻¹ of 0.422163 = 24.971197° = 24°58'16"

True Distance = 2L = 2 x 24°58'20" = 49.942393° = 49°56'33"

48°45'25" x₁, 21h y₁;		
49°56'33" >	23h14m41s	Greenwich Apparent Time
50°20'29" x ₂ , 24h y ₂	<u>15h50m06s</u>	average Local Apparent Time of observation 07s
	07h24m35s	difference in time
	x 15	degrees of longitude per hour
	111°08'45"	111°09' west longitude (should be 111°30'40")

Note: using a Local Apparent Time of 15h50m10.7s (see Local Time - Summary) yields a longitude of $111^{\circ}07'37''$ W.

LONGITUDE from LUNAR DISTANCE from the SUN – SECOND SET of OBSERVATIONS JULY 29, 1805 (page 1 of 5)

Obsei	iveu ume a			with Sextant.
	Time	Distance	Time	Distance
	hms	° ' "	h m s	0 I II
P.M.	4 45 25	49 54 00	4 50 44	49 56 45
	4 46 37	49 54 45	4 51 36	49 57 15
	4 47 40	49 55 15	4 52 36	49 57 45
	4 48 52	49 55 45	4 53 37	49 58 00
	4 49 47	49 56 15	4 54 36	49 58 15

Observed time and Distance of $\odot\mbox{'s}$ and $\supset\mbox{'s}$ nearest Limbs with Sextant. \odot West

Calculations for Longitude from Lunar Distance from the Sun, second set of observations – July 29, 1805

Average time by chronometer: 4:50:09.0; average separation by sextant: $49^{\circ}56'24.0"$. A plot of the data suggests 4:49:09.6 and $49^{\circ}55'58.1"$ (values 1 - 8 only),

True Time of Sun-Moon C ave chrono fast LAT true L/ 16:49:09.6 00:33:05.9 16:16:	AT 111°W	OCAL TIME CAL GAT 23:40:03.7	CULATIONS - Eq of Time +06m02.5s	- Summary) GMT 23:46:06.2
Sun - Moon Data from Nauti RA Sun 29th 08h32m49.6s <u>RA Sun 30th 08h36m44.5s</u> RA Sun obs2 08h34m43.8s	cal Almanac calculated f Dec Sun 29th +18°50 <u>Dec Sun 30th +18°35</u> Dec Sun obs2 +18°43	'01" SD Sun 5'44" SD Sun	25th 15'46 32nd 15'47	.7" . <u>5"</u>
RA Moon 29th 12h 168°36' <u>RA Moon 29th 24h 174°48'</u> RA Moon at obs2 174°37'42"	= 11h14m24s <u>= 11h39m12s</u> = 11h38m31s	Dec Moon 29th Dec Moon 29th Dec Moon at ob	24h 3°08'	S
SD Moon 29th 12h 15'59" SD Moon 29th 24h 15'52" SD Moon at obs 2 15'52.2"	HP Moon 29th 12h HP Moon 29th 24h HP Moon at obs 2	58'40" <u>58'12"</u> 58'12.8"	Eq of Time 29 <u>Eq of Time 30</u> Eq of Time at	th +6:01.6
RA = right ascension Dec = declination SD = semidiameter HP = horizontal parallax Eq = equation obs = observation				
True Altitude of A = Latitude: average of merid B = Sun's Declination at the tin C = Sun's Hour Angle at the tin D = tangent-1 of (tangent B x s = tangent-1 of (0.338827 x 2 E ¹ = A \pm D = 45°51' - 37°43' = F = sine-1 of (sine B x coseca	me of the observation me of observation = 4:16 secant C) = 2.282431) = 0.773350 =	and 29, to neare		s 45°51'00" 18°43'04" 64°00'55.5" 37°43'00" 8°08'
= sine-1 of (0.320907 x 1.63		9289 = True Altit	ude (Hc) =	31.284601° 31°17'05"

1. Add (+) if A and B are of different signs or C is greater than 90°, otherwise subtract (-).

LONGITUDE from LUNAR DISTANCE from the SUN – SECOND SET of OBSERVATIONS JULY 29, 1805 (page 2 of 5)

Apparent ("observed") Altitude of the Sun's Center

			<u>38°32'27 5"</u>
	=	cosecant-1 of (-18.794377 x -0.055961 x 1.526024) = -1.604946 = True Alt (Hc)	38.540971°
F	=	cosecant-1 of (cosecant B x sine D x secant E)	
E ¹		A ± D = 45°51'3°12'28" = 49.057891 =	49°03'28"
	=		-3°12'28"
D	=	cotangent-1 of (cotangent B x cosine C)	
С	=	Moon's Hour Angle as Angle = $1h12m16.5s \times 15 = 18^{\circ}04'07.5" =$	18.068750
В	=	Moon's Declination at the time of the observation $= -3^{\circ}03' =$	-3.500000
А	=	Latitude: average of meridian observations July 28 & 29, to nearest $30" = 45^{\circ}51'$	45.850000
		True Altitude of the Moon's Center for Sun-Moon Observation No. 2	
	5.	Moon's Hour Angle as Hour	01h12m16.5s
		Moon's Right Ascension at time of the observation	<u>11h38m31.0s</u>
		Sum	12h50m47.5s
	2.	Local Apparent Time of the observation, pm =	<u>04h16m03.7s</u>
		Sun's Right Ascension at time of the observation =	08h34m43.8s
		Moon's Hour Angle at Time of Observation	
		Δh_{2} = 31.3039990° - 31.284601° = 0.019389°	31°18'14"
		Therefore sun's apparent altitude (Ha) =	31.303990°
		5) 31.303990° - (cot 31.303990° x 0.013041) + (cos 31.303990° x 0.002407) =	31.284601° = Hc
		4) 31.304006° - 0.000016° = 31.303990° = Ha2	
		3) 31.284617° - 31.284601°(Hc) = 0.000016°	
		2) 31.304006° - (cot 31.304006° x 0.013041) + (cos 31.304006° x 0.002407) =	31.284617°
Н	=	1) $31.284601^{\circ} + (\cot 31.284601^{\circ} \times 0.013041) - (\cos 31.284601^{\circ} \times 0.002407) =$	31.304006° (Ha1)
2		$(8.664 \div 3600) \times \cos Hc$, Ha; G ₂ = 0.002407° x Hc, Ha	
G.		Parallax (P) = $[(8.794 \div 1.015 \text{ AU}) \div 3600] \times \cos \text{Hc}$ (1st trial), then Ha afterwards	
u ₁		$\{[(983 \times 25.79) \div (460 + 80^{\circ})] \div 3600\} \times \text{cot Hc}, \text{ then Ha}; G_1 = 0.013041^{\circ} \times \text{cot Hc}, \text{ then Ha}; G_2 = 0.013041^{\circ} \times \text{cot Hc}, \text{ then Ha}; G_3 = 0.013041^{\circ} \times \text{cot Hc}, \text{ then Ha}; G_3 = 0.013041^{\circ} \times \text{cot Hc}, \text{ then Ha}; G_3 = 0.013041^{\circ} \times \text{cot Hc}, \text{ then Ha}; G_3 = 0.013041^{\circ} \times \text{cot Hc}, \text{ then Ha}; G_3 = 0.013041^{\circ} \times \text{cot Hc}, \text{ then Ha}; G_3 = 0.013041^{\circ} \times \text{cot Hc}, \text{ then Ha}; G_3 = 0.013041^{\circ} \times \text{cot Hc}, \text{ then Ha}; G_3 = 0.013041^{\circ} \times \text{cot Hc}, \text{ then Ha}; G_3 = 0.013041^{\circ} \times \text{cot Hc}, \text{ then Ha}; G_4 = 0.013041^{\circ} \times \text{cot Hc}, \text{ then Ha}; \text{ then Ha};$	
G	=	Refraction (R) = [(983 x inches Hg \div (460 + t ^o F) x = cotangent Hc (1st trial), then	Ha afterwards

1. Add (+) if A and B are of different signs or C is greater than 90 $^\circ,$ otherwise subtract (-).

Apparent ("observed") Altitude of Moon's Center

G_1 = Refraction (R) = 0.013041 x cotangent Hc, Ha (see Sun, above) G_2 = Parallax (P) = moon's Horizontal Parallax (0.970215) x cosine Hc, Ha	
	27 709476° (Ha1)
$H = 1)38.540971^{\circ} + (\cot 38.540971^{\circ} \times 0.013041) - (\cos 38.540971^{\circ} \times 0.970215) =$	37.798476° (Ha1)
2) 37.798476° - (cot 37.798476° x 0.013041) + (cos 37.798476° x 0.970215) =	38.548298°
3) 38.548298° - 38.540971°(Hc) = 0.007327°	
4) 37.798476° - 0.007327° = 37.791148° = Ha2	
5) 37.791148° - (cot 37.791148° x 0.013041) + (cos 37.791148° x 0.970215)° =	38.541043°
6) 38.541043° - 38.540971°(Hc) = 0.000072°	
7) 37.791148° - 0.000076° = 37.791077° = Ha3	
8) 37.791077° - (cot 37.791077° x 0.013041) + (cos 37.791077° x 0.970215)° =	38.540971° = Hc
Therefore moon's apparent altitude (Ha) =	37.791077°
$\Delta h_{\mathfrak{D}}$ = 37.791077° - 38.540971° = - 0.749894°	37°47'28"

Moon's Augmentation from its Apparent Altitude in Sun-Moon Observation No. 2Augmentation \circ = (sine Ha x ightharpoints's SD) = (sine 37°47'28" x 15'52" \circ) \div 60 = 0.002701 \circ = 9.7"

LONGITUDE from LUNAR DISTANCE from the SUN – SECOND SET of OBSERVATIONS JULY 29, 1805 (page 3 of 5)

Correct observed distance for Observation No. 2 for index error, semidiameters and augmentation Observed distance minus index error, plus sun's semidiameter + moon's semidiameter + augmentation

- 49°55'58.1" observed average
- 8'45" sextant's index error
- 49°47'13"
- + 15'47" sun's semidiameter
- + 15'52" moon's semidiameter
- + 00'10" moon's augmentation
- 50°19'02" apparent sun-moon separation

LONGITUDE from LUNAR DISTANCE from the SUN – SECOND SET of OBSERVATIONS July 29, 1805 (page 4 of 5)

True separation of the Sun and the Moon, second set of observations – July 29, 1805

Patterson, Form V (modified)

B = C = D = E ¹ = F =	Apparent separation of moon's center from sun's center Apparent altitude of moon's center Apparent altitude of sun's center $\frac{1}{2}(B + C) =$ $C \sim D =$ $A \div 2 = 50^{\circ}19'02'' \div 2 =$	50°19'02" 37°47'28" 31°18'14" 34°32'51" 03°14'37" 25°09'31"
	tangent-1 of (tangent D x cotangent E x tangent F) = tangent-1 of (0.688502 x 17.645321 x 0.469682)	
= H ² =	tangent-1 of 5.706096 = F ± G = F ± G =	80°03'35.2" 54°54'04.2" 105°13'06.2"
	180 ÷ moon's horizontal parallax = 180 ÷ 58'12.7" = 180 ÷ 58.213' =	03.092093
L =	180 ÷ cosecant B x tangent I x K =	
N = O ⁴ =	$180 \div (1.631895 \text{ x} - 3.675945 \text{ x} 3.092093) = 180 \div 18.54871 = 9.70418 =$ refraction of I = [(983 x 25.86) ÷ 530] x cot (180°- I) [74°47'15"] = L - M = 9'42" - 14" = 1st correction = A ± N = 50°19'02" - 9'28" =	00°09'42" 00°00'14" 00°09'28" 50°09'34"
	refraction and parallax of H for sun = r = [(983 x 25.86) ÷ 530] x cot 54°54'04"; p = cosine H x 8.794	
= Q ⁵ = R ⁶ = S ⁷ = T ⁸ =	$r = [(983 \times 23.80) + 350] \times Cot 34 + 34 + 64 + p = cosine fr \times 8.794$ $r = 33.7"; p = 5.1"; r - p = second correction = 28.6" = 0 \pm P = 50^{\circ}09'34" + 29"=$ 3rd correction, from Table XIII (Tables Requisite) true distance = 50°10'02" + 4" = preceding distance in Nautical Almanac (21h) = following time in Nautical Almanac (24h) =	00°00'29" 50°10'03" 00°00'04" 50°10'07" 48°45'25" 50°20'29"

Calculating the Longitude

48°45'25" x ₁ , 21h y ₁ ,			
50°10'07"	>	23h40m22.3s	
50°20'29" x ₂ , 24h y ₂		<u>16h16m03.7s</u>	average Local Apparent Time of observation
		07h24m18.6s	difference in time
		x 15	
		111°04'39" W	111°05" W (should be 111°30'40")

1. The symbol ~ means "absolute value".

2. Add (+) if C is greater than B, if not subtract (-); therefore F - G.

3. Subtract (-) if C is greater than B, if not add (+); therefore F + G.

4. Subtract (-) if H or I is greater than 90°; or H is greater than I; therefore A - N.

5. Add (+) if H or I is greater than 90°; or H is less than I; therefore O + P

6. In Table VII find the correction of moon's altitude, then in Table XIII under the nearest degree to Q at the top, find two numbers; one opposite to the nearest minute to moon's correction of altitude found as above, and the other opposite the nearest minute to first correction (N) and the difference of these two numbers will be the third correction. This correction may, without sensible error, be generally omitted.
7. Add (+) if Q is less than 90°, if not, subtract (-) = Q + R

8. T and U; These are to be found in Nautical Almanac from page 8th to page11th of the month opposite the day of the month and the sun or star from which the moon's distance was observed; taking out the two distances, which are next greater and next less than the true distance (S) calling that the <u>preceding distance</u> which comes first in the order of time and the other the <u>following distance</u>)

LONGITUDE FROM LUNAR DISTANCE from the SUN – SECOND SET of OBSERVATIONS July 29, 1805 (page 5 of 5)

True separation of the Sun and the Moon, second set of observations - July 29, 1805

Jean Borda's Method (1787), modified to use RPN calculator

A = \mathfrak{I} 's Apparent Altitude =	37°47'28"	m
B = \mathfrak{I} 's Apparent Altitude =	31°18'14"	s
C = Apparent Distance =	50°19'02"	d
D = \mathfrak{I} 's True alt =	38°32'27.5"	M
E = \mathfrak{I} 's True alt =	31°17'05"	S
$F = (A + B + C) \div 2 = G = (A + B - C) \div 2 = H = (D + E) \div 2 =$	59°42'22" 09°23'20" 34°54'44.5"	(m + s + d) ÷ 2 (m + s - d) ÷ 2 (M + S) ÷ 2

I = cosine⁻¹ $\sqrt{-}$ secant A x secant B x cosine D x cosine E x cosine F x cosine G = cosine⁻¹ $\sqrt{-}$ 1.265422 x 1.170380 x 0.782163 x 0.854597 x 0.504436 x 0.986604 = = cosine⁻¹ $\sqrt{-}$ 0.492685 = cosine⁻¹ 0.701915 = 45.419131° = 45°25'09"

J = sine (I + H) = sine 80°19'55" = 0.985797

K = sine (I - H) = sine $10^{\circ}30'23'' = 0.182343$

L = sine⁻¹ $\sqrt{}$ (J x K) = sine⁻¹ $\sqrt{}$ 0.179754 = sine⁻¹ 0.423974 = 25.085713° = 25°05'09"

True Distance = 2L = 2 x 25.085713° = 50.171425° = 50°10'17"

48°45'25" x₁, 21h y₁;		
50°10'17" >	23h40m41.2s	Greenwich Apparent Time
50°20'29" x ₂ , 24h y ₂	<u>16h16m03.7s</u>	average Local Apparent Time of observation
	07h24m37.5s	difference in time
	x 15	degrees of longitude per hour
	111°09'23"	111°09' west longitude

Note: using a LAT of 16h16m08.7s (see Local Time - Summary) yields a longitude of 111°08'08" W

LONGITUDE from LUNAR DISTANCE from ANTARES JULY 29, 1805 (page 1 of 5)

Observed time and Distance of \mathfrak{I} 's Western limb from α Antares, with Sextant \bigstar East

8 42 16 68 56 00 9 01 12 68 46 00 8 50 55 68 52 30 9 03 01 68 45 30 8 54 44 68 49 45 9 04 47 68 45 00 8 55 56 68 49 00 9 06 27 68 44 00 8 58 53 68 47 15 9 08 31 68 13 45	Time PM h m s	Distance	Time PM	Distance	
8 54 44 68 49 45 9 04 47 68 45 00 8 55 56 68 49 00 9 06 27 68 44 00	8 42 16	68 56 00	9 01 12	68 46 00	
8 55 56 68 49 00 9 06 27 68 44 00	8 50 55	68 52 30	9 03 01	68 45 30	
	8 54 44	68 49 45	9 04 47	68 45 00	
8 58 53 68 47 15 9 08 31 68 13 45	8 55 56	68 49 00	9 06 27	68 44 00	
	8 58 53	68 47 15	9 08 31	68 13 45	

Calculations for Longitude from Lunar Distance from Antares - 1805 July 29

Average time by chronometer: 8:58:58.2 PM; average separation by sextant: 68°47'52.5". A plot of times and distances, however, shows that the time for data set No.1 probably should be 8h45m16s, not 8h42m16s and the distance for data set No. 10 should be 68°43'45", not 68°13'45". Owing to uncertainties regarding the correct values, however, these two data sets should not be used. In addition, the plot of times and distances for data sets 2 through 9 shows that from fata set No. 7 on, refraction is distorting the distances as the moon nears the horizon. The most reliable data sets are No. 2 through No. 6. The average of these values gives a chronometer time of 8h57m26.8s p.m. and a sextant angular distance of 68°48'20".

True Time of the Antares-Moon observation (see LOCAL TIME CALCULATIONS – Summary)

Ave chronofast LAT20:57:26.800:33:00.9	True LAT 20:24:25.9	111°W +7h24m	GAT 27:48:25.9	Eq of Time +06m02.2s	GMT 03:54:28.1 30th
Sun - Moon Dat	a from Nautica	l Almanac Calcu	llated for time of	Antares-Moon o	observation
RA Sun 29th 8h32m4	9.6s Dec S	un 29th +18°	50'01" SD S	un 25th 15'4	6.7"
RA Sun 30th 8h36m4	4.5s Dec S	un 30th +18°:	35'44" SD S	un 32nd 15'4	7.5"
RA Sun obs 8h35m2	4.3s Dec S	un obs +18°4	40'37" SD S	un obs 15'4	7.2"
RA Moon 29th 24h 174°	48' = 11h3	39m12s	Dec Moon 29	th 24h -3°0	8'
RA Moon 30th 12h 180°	56' = 12h0)3m44s	Dec Moon 30	th 12h -6°0	<u>0'</u>
RA Moon at obs 176°	44'45" = 11h4	16m59s	Dec Moon at	obs -4°0	2'32"
SD Moon 29th 24h 15'52	<u>2</u> "	HP Moon 29th	n 24h 58'12	2" EqT	29th +6:03.3
SD Moon 30th 12h 15'44	1"	HP Moon 30th	n 12h 57'44		30th +6:01.6
SD Moon at obs 15'49	9.46"	HP Moon at o	bs 58'03	3.1" EqT	obs +6:02.2

RA = right ascensionHP = horizontal parallaxDec = declinationEq = equationSD = semidiameterobs = observation

Right Ascension (RA) and Declination (DEC) of Antares 1805 July 30

Tables Requisite: 1805 January 1, RA = 16h17m28s, annual variation = +3.64sJuly 30 = 0.575 year x +3.64s per year = +2.1s + 16h17m28s =Tables Requisite: 1805 January 1: DEC = $-25^{\circ}59'05"$, annual variation = + 8.7"July 30 = 0.575 year x +8.7" per year = +5.0" + $-25^{\circ}59'05"$ =-25^{\circ}59'10"

LONGITUDE from LUNAR DISTANCE from ANTARES JULY 29, 1805 (page 2 of 5)

Hour Angle of Antares and Moon

Antares		Moon
08h35m24.3s	Sun's Right Ascension at time of the observation	08h35m24.3s
08h24m25.9s	Local Apparent Time of the observation, pm =	08h24m25.9s
16h59m50.2s	Sum = Right Ascension of Meridian	16h59m50.2s
16h17m30s	Right Ascension at time of the observation	11h46m59s
00h42m20.2s	Hour Angle in hours	05h12m51.2s
	08h35m24.3s 08h24m25.9s 16h59m50.2s 16h17m30s	08h35m24.3sSun's Right Ascension at time of the observation08h24m25.9sLocal Apparent Time of the observation, pm =16h59m50.2sSum = Right Ascension of Meridian

True Altitude of Antares for the Antares-Moon observation

A =	Latitude: meridian observations July 28 and 29 (to nearest 30" =	45°51' =	45.850000
В =	Antares's Declination at the time of the observation =	-25°59'10" =	-25.986111
C =	Antares' Hour Angle as an angle = 42m20.2s x 15 =	10°35'03" =	10.584167
	cotangent ¹ of (cotangent B x cosine C) =		
=	cotangent ¹ of (-2.051566 x 0.982986) = -2.016661 =	-26°22'31" =	-26.375397
E ¹ =	A ± D = 45°51'26°22'31" =	72°13'31" =	72.225397
F =	cosecant ⁻¹ of (cosecant B x sine D x secant E)		
=	cosecant ⁻¹ of (-2.282306 x -0.444251 x 3.275753) = -3.321339 = Tr	ue Alt (Hc) =	17.522688°
			17°31'22"

1. Add (+) if declination and latitude are of different signs or C is greater than 90° .

Apparent ("observed") Altitude of Antares

Н =	1) 17.522688° + (cotangent 17.522688° x 0.013542) = Ha1 =	17.565579°
	2) 17.565579° - (cotangent 17.565579° x 0.013542) =	17.522800°
	3) 17.522800° - 17.522688°(Hc) = 0.000112°	
	4) 17.565579° - 0.000112° = 17.565467° = Ha2	
	5) 17.565467° - (cot 17.565467° x 0.013542) =	17.522688° = Hc
	Therefore apparent altitude of Antares (Ha) =	17.565467°
	Δh★ = 17.565467° - 17.522688° = +0.042779°	17°33'56"

True Altitude of the Moon's Center for the Antares-Moon observation

A =	Latitude: meridian observations July 28 and 29 (to nearest 30") =	45°51' =	45.850000
В =	Moon's Declination at the time of the observation =	-4°02.5'	-4.041667
C =	Moon's Hour Angle as an angle = 5h12m51.2s x 15 =	78°12'48"	78.213333
	cotangent ⁻¹ (cotangent B x cosine C) =		
	cotangent ⁻¹ (-14.152754 x 0.204268) = -2.890958 =	-19°04'51"	-19.080813°
E ¹ =	A ± D = 45°51'19°04'51" =	64°55'51"	64.930813°
F =	cosecant ¹ of (cosecant B x sine D x secant E)		
=	cosecant ¹ of (-14.188039 x 0.326901 x 2.360092) = -10.946318 =	True Alt (Hc)	5.241559°
			5°14'30"

1. Add (+) if declination and latitude are of different signs or C is greater than 90 $^\circ.$

LONGITUDE from LUNAR DISTANCE from ANTARES JULY 29, 1805 (page 3 of 5)

Apparent ("observed") Altitude of the Moon's Center at observation

$G_1 =$	Refraction = 0.013542 x cotangent Hc, Ha (see Antares, above)	
$G_{2} =$	Parallax = moon's Horizontal Parallax (0.967532°) x cosine Hc, Ha	
H =	1) 5.241559° + (cot 5.241559° x 0.013542) - (cos 5.241559° x 0.967532) =	4.425688° = Ha1
	2) 4.425688° - (cot 4.425688° x 0.013542) + (cos 4.425688° x 0.967532) =	5.215367°
	3) 5.215367° - 5.241559°(Hc) = -0.026192°	
	4) 4.425688° + 0.026192° = 4.451880° = Ha2	
	5) 4.451880° - (cot 4.451880° x 0.013542) + (cos 4.451880° x 0.967532) =	5.242558°
	6) 5.242558° - 5.241559°(Hc) = 0.000999°	
	7) 4.451880° - 0.000999° = 4.450881° = Ha3	
	8) 4.450881° - (cot 4.450881° x 0.013542) + (cos 4.450881° x 0.967532) =	5.241521° = Hc3
	9) 5.241521° - 5.241559°(Hc) = -0.000038°	
	10) 4.450881° + 0.000038° = 4.450919°	
	11) 4.450919° - (cot 4.450919° x 0.013542) + (cos 4.450919° x 0.967532) =	5.241559° = Hc
	Therefore moon's apparent altitude (Ha) =	4.450919°
	Δh> = 4.450919° - 5.241559° = - 0.790640°	4°27'03"

Moon's Augmentation from its Apparent Altitude in the Antares-Moon observation

Augmentation = (sine Ha x >'s SD) ÷ 60 = (sine 4°26'54" x 0.15'49.5") ÷ 60 = 0.000341° = 1.2"

Apparent Antares-Moon Distance

Observed distance, minus index error, minus (moon's semidiameter + augmentation) (far limb)

68°48'20"	sextant observed distance
- 8'45"	sextant's index error
68°39'35"	
- 0°15'49.5"	moon's semidiameter (far limb)
<u>- 0°00'01"</u>	augmentation (far limb)
68°23'44.5"	apparent separation of moon and Antares

LONGITUDE from LUNAR DISTANCE from ANTARES July 29, 1805 (page 4 of 5)

True separation of Antares and the Moon – July 29, 1805

Patterson, Form V (modified)	
A = Apparent separation of moon's center from Antares	68°23'44.5"
B = Apparent altitude of moon's center	04°27'03"
C = Apparent altitude of Antares	17°33'56"
$D = \frac{1}{2}(B + C) =$	11°00'29.5"
$E^1 = C \sim D =$	06°34'53.8"
F = A ÷ 2 =	34°11'52.2"
G = tangent-1 of (tangent D x cotangent E x tangent F) =	
tangent-1 of (0.194529 x 8.692432 x 0.677439) =	
tangent-1 of 1.145500 =	48°52'47.7"
$H^2 = F \pm G =$	83°04'39"
$I^{3} = F \pm G =$	14°40'54.5"
K = 180 ÷ moon's horizontal parallax =180 ÷ 58'03.1" = 180 ÷ 58.05) =	03.100686
L = 180 ÷ (cosecant B x tangent I x K) =	
= $180 \div (12.886001 \times 0.262005 \times 3.100686) = 10.468546$	
= 180 ÷ 10.468546 = 17.194365' =	00°17'12"
M = refraction of I = [(983 x 25.86) ÷ 510] x cotangent 14°40'54.5" = 190" =	00°03'10"
N = L - M = 17'12" - 3'10" = 1st correction =	00°14'02"
$O^4 = A \pm N = 68^{\circ}23'44.5'' - 14'02'' =$	68°09'42.5"
P = refraction of H for star =	
= r = [(983 x 25.86) ÷ 510] x cotangent 83.04'39" =	00°00'06"
$Q^5 = O \pm P = 68^{\circ}09'42.5'' - 6''=$	68°09'36.5"
R ⁶ = correction from Table XIII (Tables Requisite)	00°00'02"
S^7 = true distance = Q ± R = 68°09'36" + 2"	68°09'38"
T [*] = preceding distance in Nautical Almanac (27h) =	68°36'37"
U ⁸ = following time in Nautical Almanac (30h) =	66°55'14"

Calculating the Longitude

68°36'37" x _{1:} 27h y ₁	0	ů –
68°09'38" >	27h47m54.4s	
66°55'14" x ₂ ; 30h y ₂	<u>20h24m25.9s</u>	average Local Apparent Time of observation
	07h23m28.5s	difference in time
	x 15	
	110°52'08 " W	110°52 W (should be 111°30'40")

1. The symbol ~ means "absolute value".

2. Add (+) if C is greater than B, if not subtract (-); therefore F + G.

3. Subtract (-) if C is greater than B, if not add (+); therefore F - G.

4. Subtract (-) if H or I is greater than 90°; or H is greater than I; therefore A - N.

5. Add (+) if H or I is greater than 90°; or H is less than I; therefore O - P

6. In Table VII find the correction of moon's altitude, then in Table XIII under the nearest degree to Q at the top, find two numbers; one opposite to the nearest minute to moon's correction of altitude found as above, and the other opposite the nearest minute to first correction (N) and the difference of these two numbers will be the third correction. This correction may, without sensible error, be generally omitted.
7. Add (+) if Q is less than 90°, if not, subtract (-) = Q + R

8. T and U; These are to be found in Nautical Almanac from page 8th to page11th of the month opposite the day of the month and

the sun or star from which the moon's distance was observed; taking out the two distances, which are next greater and next less than the true distance (S) calling that the preceding distance which comes first in the order of time and the other the following distance)

LONGITUDE from LUNAR DISTANCE from ANTARES JULY 29, 1805 (page 5 of 5)

True separation of Antares and the Moon - July 29, 1805

Jean Borda's Method (1787), modified to use RPN calculator

A = \supset 's Apparent Altitude =	04°27'03"	m
B = \star 's Apparent Altitude =	17°33'56"	s
C = Apparent Distance =	68°23'44.5"	d
D = \supset 's True alt =	05°14'30"	M
E = \star 's True alt =	17°31'22"	S
$F = (A + B + C) \div 2 = G = (A + B - C) \div 2 = H = (D + E) \div 2 =$	45°12'21.8" 23°11'22.8" 11°22'56"	(m + s + d) ÷ 2 (m + s - d) ÷ 2 (M + S) ÷ 2

I = cosine⁻¹ $\sqrt{-}$ secant A x secant B x cosine D x cosine E x cosine F x cosine G = cosine⁻¹ $\sqrt{-}$ 1.003025 x 1.048908 x 0.995818 x 0953597 x 0.704559 x 0.919206 = = cosine⁻¹ $\sqrt{-}$ 0.647031 = cosine⁻¹ 0.804382 = 36.449364° = 36°26'57.7"

J = sine (I + H) = sine $47^{\circ}49'54'' = 0.741175$

K = sine (I - H) = sine $25^{\circ}04'02'' = 0.423680$

L = sine⁻¹ $\sqrt{}$ (J x K) = sine⁻¹ $\sqrt{}$ 0.314021 = sine⁻¹ 0.560376 = 34.081785° = 34°04'54"

True Distance = $2L = 2 \times 34.081785^{\circ} = 68.163571^{\circ} = 68^{\circ}09'49''$

68°36'37" x ₁ , 27h y ₁ ;		
68°09'49" >	27h47m34.9s	Greenwich Apparent Time
66°55'14" x ₂ , 30h y ₂	20h24m25.9s 07h23m09.1s <u>x 15</u> 110°47'16"	average Local Apparent Time of observation difference in time degrees of longitude per hour 110°47' west longitude

Note: using a LAT of 20h24m35.5s (see Local Time - Summary) yields a longitude of 110°44'52"W

MAGNETIC DECLINATION from COMPASS BEARING of the SUN – AM OBSERVATION JULY 29, 1805 (page 1 of 2)

o's magnetic azimuth				
Time by chrono- meter	Azimuth by circumferentor	Altitude of ⊙'s lower limb with sextant		
h m s A.M. 84809 <u>85357</u>	N 85 E N 86 E	73 00 00 74 58 15		
Calculations for	Magnetic Declination	from Compass Bearing of the Sun, AM Observa	tion–July 29, 1805	
Average from sun	's meridian altitude, 1	Latitude 805 July 28 and 29 (rounded to nearest 30") =	45°51'00"	
8:48:09 + 8:53:57		e Chronometer Time of Observations	08:51:03	
True Local Apparent Time of the Observation AverageChronometer time of Local Noon, 1805 July 28 =12:33:39.4Chronometer time of Local Noon, 1805 July 29 as if the 28th (12h33m11.0s + 24h)36:33:11.012h33m39.4s x_1 , 12h y_1 and 36h33m11.1s x_2 , 36h y_2 32:17:47.6Solve for 32:51:03 (8:51:03 chronometer time of observation + 24h) =32:17:47.632:17:47.6 - 24h = True Local Apparent Time of observation average =08:17:47.6				
Greenwich Apparent Time of Observation Average at Estimated 111° W LongitudeTime difference from 0° longitude to 111° W =07:24:00Local apparent time of observation average =08:17:47.6Estimated Greenwich Apparent Time of observation =15:41:47.6				
Sun's declination at Average Time of ObservationsSun's declination Greenwich Apparent Noon, 1805 July 29 =+18°50'01" NSun's declination Greenwich Apparent Noon, 1805 July 30 =+18°35'44" NSun's declination at 15:41:47.6 Greenwich Apparent Time =+18°47'49" N				
Altitude of Sun's Center $73°59'07.5"$ observed double altitude of sun's lower limb; average $-\underline{0°08'45"}$ sextant's index error $73°50'22.5"$ double altitude corrected for index error \div 2divide by 2 (artificial horizon has doubled the angle read) $36°55'11$ apparent altitude of sun's lower limb = H $-0°01'04.9"$ refraction (see Latitude, footnote 1) $+0°00'06.9"$ parallax (see Latitude, footnote 2) $\pm 0°15'47.2"$ semidiameter $37°10'00"$ true altitude of sun's center per this observation				
Sun's Zenith Distance Zenith distance = 90°- true altitude of center = 90°- 37°10'00" = 52°50'00"				
Average Magnetic Bearing/Azimuth of the Sun N85°E + N86°E = N85.5°E = Azimuth = 085.5°				

MAGNETIC DECLINATION from COMPASS BEARING of the SUN – AM OBSERVATION JULY 29, 1805 (page 2 of 2)

Sun's Azimuth at the Average Time of the AM Observation

sine $\frac{1}{2}$ azimuth = $\sqrt{\text{cosine } \frac{1}{2} \text{ (Latitude + Zenith Distance + Declination) x sine } \frac{1}{2} \text{ (Lat + ZD - Dec)}}{\text{cosine Latitude x sine Zenith Distance}}$

Latitude Zenith Distance Sum Declination Divided by 2	$= 45^{\circ}51'00"$ $= 52^{\circ}50'00"$ $= 98^{\circ}41'00" \qquad 98^{\circ}41'00"$ $= +\frac{18^{\circ}47'49"}{117^{\circ}28'49"} \qquad -\frac{18^{\circ}47'49"}{79^{\circ}53'11"}$ $\div 2 \qquad 58^{\circ}44'24.5" \qquad \div 2 \qquad 39^{\circ}56'35.5"$
sine ½ azimuth	= $\sqrt{(\cos 16.5 \times 10^{\circ})}$ (cosine 58°44'24.5" x sine 39°56'35.5") ÷ (cosine 45°51'00" x sine 52°50'00")
	= $\sqrt{(0.518920 \times 0.642028)} \div (0.696539 \times 0.796882)$
	= √ 0.333161 ÷ 0.555059
	= √ 0.600227 = 0.774743
sine ⁻¹ 0.774743	= 50.781731° = ½ azimuth
azimuth Average Magnetic Average Magnetic	

MAGNETIC DECLINATION from COMPASS BEARING of the SUN – PM OBSERVATION JULY 29, 1805 (page 1 of 2)

Observed magnetic azimuth of the sun Time by chrono- Azimuth by Altitude of ⊙'s lower meter circumferentor limb by sextant. h m s ° ' "					
P.M. 507 513	47	S 72 W S 73 W	55 44 30 53 52 45		
Calculatio	ons for	Magnetic Declination f	rom Compass Bearing of the Sun, AM Observati	on–July 29, 1805	
Average fro	om sun		252.5° 305 July 28 and 29 (rounded to nearest 30") = (p.m.) = 5:07:47 + 5:13:04 = 10:20:51 ÷ 2 =	45°51'00" 5:10:25.5 pm	
Chronome	ter time	of Local Noon 1805 J	uly 29 = 24h + 12h33m11.0s		
			meter time of observation average + 24h) = Time of observation average =	40:37:20.0 16:37:20.0	
Greenwich Apparent Time of Observation Average at Estimated 111° W LongitudeTime difference from 0° longitude to 111° W =07:24:00Local Apparent Time of observation average =16:37:20Greenwich Apparent Time of observation average =24:01:20					
Sun's Declination at Average Time of ObservationSun's declination Greenwich Apparent Noon, 1805 July 29:18°50'01" NSun's declination Greenwich Apparent Noon, 1805 July 30:18°35'44" NSun's declination at 24:01:20 Greenwich Apparent Time =18°42'52" N					
	Altitude of the Sun's Center				
54°48'37.5 <u>- 0°08'45"</u> 54°39'52.5	s	ouble altitude of sun's extant's index error ouble altitude	lower limb; average		
\div 2 $27^{\circ}10'56"$ apparent altitude = H $-0^{\circ}01'30"$ refraction (see Latitude, footnote 1) $+0^{\circ}00'08"$ parallax (see Latitude, footnote 2) $+0^{\circ}15'47"$ semidiameter $27^{\circ}34'21"$ true altitude of sun's center per this observation					
Sun's Zenith DistanceZenith distance = 90°- true altitude of sun's center = 90°- 27°34'21" =62°25'39"					

MAGNETIC DECLINATION from COMPASS BEARING of the SUN – PM OBSERVATION JULY 29, 1805 (page 2 of 2)

Sun's Azimuth at the Time of the Observation Average

sine $\frac{1}{2}$ azimuth = $\sqrt{\text{cosine } \frac{1}{2} \text{ (Latitude + Zenith Distance + Declination) x sine } \frac{1}{2} \text{ (Lat + ZD - Dec)}}{\text{cosine Latitude x sine Zenith Distance}}$

Latitude Zenith Distance Sum Declination Divided by 2	$= 45°51'00"$ $= 62°25'39"$ $= 108°16'39" = 108°16'39"$ $= +18°42'52" - 18°42'52"$ $= 126°59'31" - 89°33'47"$ $\div 2 - 63°29'45.5" - 44°46'53.5"$		
sine ½ azimuth	= $\sqrt{(\cos 63^{\circ}29'45.5'' \times \sin 44^{\circ})}$	46'53.5") ÷ (cosir	ne 45°51'00" x sine 62°25'39")
	= √ (0.446261 x 0.704405) ÷ (0.696	6539 x 0.886426)	
	= √ (0.314348 ÷ 0.617430)		
	= √ 0.509124 = 0.7135	29	
sine ⁻¹ 0.713529	= 45.522782° = ½ azimuth		
azimuth	= 45.522782 x 2 = 91.045564° (from	n north because	sun is west in p.m.)
true azimuth Average Magnetic Average magnetic		268°57'16" <u>252°30'</u> 016°27'16" =	16½ ° East
Average of Sun observations: a.m. 16.06°E + p.m. 16.45°E = 16¼° East			

MAGNETIC DECLINATION from COMPASS BEARING of POLARIS JULY 29, 1805 (page 1 of 2)

Observed the azimuth of the Pole Star

	Time by chronometer	Azimuth by circumferentor
	h m	
P.M.	9 27	N13°W

Calculations for Magnetic Declination from Compass Bearing of Polaris – July 29, 1805

Calculations for Magnetic Declination from Compass Bearing of Polaris – July 29, 1805					
Magnetic bearing of Polaris at the Time of Observation =	N 13° W				
True Local Apparent Time of the ObservationChronometer time of Local Noon, 1805 July 2812h33m39.4sChronometer time of Local Noon, 1805 July 2924h + 12h33m11.0sChronometer loss per day on Local Apparent Time28.4s = 1.18 seconds	s per hour				
Chronometer time of observation (21:27:00) - chronometer time of noon (12:33:11) = 8.9h (later) 8.9h x loss of 1.18s per hour = 10.4s extra loss Chronometer fast at noon July 29th (33m11.0s) - loss since noon (10.4s) = 33m00.4s fast at observation True Local Apparent Time of observation = chronometer time (21:27) - fast (33m00.4s) = 20:53:59.6					
12:33:39.4 x_1 ,12 y_1 ; 36:33:11.0 x_2 ; 36 y_2 ; solve for 45:27:00 (21:27 + 24h) = 44:53:59.5 - 24h = True Local Apparent time of observation =	44:53:59.6 20:53:59.6				
Estimated Greenwich Apparent Time of the Observation Estimated longitude = 111° W Time difference from 0° longitude to 111° W = 111° ÷ 15 = Local Apparent Time of observation = Estimated Greenwich Apparent Time of observation = Hours since Greenwich noon	07:24:00.0 <u>20:53:59.6</u> 28:17:59.6 16:17:59.6				
Right Ascension of the Sun at the Time of Observation Sun's Right Ascension Greenwich Apparent Noon, 1805 July 30 = Sun's Right Ascension Greenwich Apparent Noon, 1805 July 29 = difference per day change per hour RA at obs = 9.79 seconds x 16h18m since noon = 2m39.6s + 8h32m49.6s = Look-up table 9.8 sec at 16h = 156.8s + 18m = 3s = 159.8s = 2m39.8s + 8h32m49.6s = Sun's RA at obs also = 12x ₁ , 8:32:49.6y ₁ ; 36x ₂ , 8:36:44.5y2; solve for 28:17:59.6 =	8h36m44.5s 8h32m49.6s 0h03m54.9s ÷ 24h 9.79 seconds 8h35m29.2s 8h35m29.4s 8h35m29.1s				
Right Ascension (RA) and Declination (DEC) of Polaris for the Date of Obse From Tables Requisite 1805 Jan 1; RA = 0h53m25s, annual variation = +12.89s July 30 = 0.575 year x +12.89s variation per year = +7.4s =	ervation 00h53m32s				
From Tables Requisite 1805 Jan 1: DEC = 88°15'50", annual variation = +19.6" July 30 = 0.575 year x +19.6" variation per year = +11.3"	88°16'01"				

MAGNETIC DECLINATION from COMPASS BEARING of POLARIS JULY 29, 1805 (page 2 of 2)

Hour Angle of Polaris

Hour Angle of I	Polaris	
Right Ascension Sun at Observation =		
Local Apparent Time of observation PM =		
Right Ascension of the Meridian =	17h29m29s	
Right Ascension of Polaris =	00h53m32s	
Hour Angle of Polaris in time =	16h35m57s	
Hour Angle of Polaris in degrees =		
True Altitude of Polaris at Observation by Patters	on's Problem 4th, Example 3	; Form IV A
A = Latitude: mean of observations of 28 and 29 July 18	45°51'00"	
B = Declination of Polaris at observation =	88°16'01"	
C = Hour Angle of Polaris, in degrees, at observation =	248°59'15"	
D = cotangent ⁻¹ (cotangent B x cosine C) =		
= cotangent ⁻¹ (0.030257 x -0.358572) = -0.010849 =		-89.378410°
$E = A \pm D = 45.850000^{\circ}89.378410^{\circ} =$		135.228410°
F = cosecant ⁻¹ (cosecant B x sine D x secant E) =		
= cosecant ¹ (1.000458 x 0.999941 x -1.408609) = 1.4	109171 = True Alt (Hc) =	45.205394°
Zenith Distance of Polaris = 90° - True Altitude =	44°47'41"	

Azimuth of Polaris at the Time of Observation

sine $\frac{1}{2}$ azimuth = $\sqrt{-\frac{1}{2}}$ (Latitude + Zenith Distance + Declination) x sine $\frac{1}{2}$ (Lat + ZD - Dec)					
			cosine Latitude x sine Zenith Distance		
Latitude		5°51'00"			
Zenith Distance	e = <u>4</u>	<u>4°47'41"</u>			
Sum	ę	90°38'41"	90°38'41"		
Declination	= +8	38°16'01"	<u>-88°16'01"</u>		
	17		2°22'40"		
	÷	2	÷ 2		
	8	<u>2</u> 39°27'21"	1°11'20"		
sine ½ azimuth	= √	(cosine 89°27'21	" x sine $1^{\circ}11'20$ ") ÷ (cosine $45^{\circ}51'00$ " x	sine 44°47'41")	
= $\sqrt{-}$ (0.009497 x 0.020749) ÷ (0.696539 x 0.704569)					
	= √	0.000197 ÷ 0.490	0760		
	= √	0.000402 =	0.020038		
sine ⁻¹ 0.020038	=	1.148186° = ½ a	zimuth		
azimuth	=	1.148186° x 2 = 2	2.296372° = 2°17'47"		
Observed Magnetic Bearing, 1805 July 29=N13°WCalculated Bearing (rounded)= $N 214°E$ Magnetic Device of the second sec					

Calculated Bearing (rounded)= $N 2^{1/4} \circ E$ Magnetic Declination per this observation= $15^{1/4} \circ E$ astMagnetic Declination averaged from AM and PM with sun Observations= $16^{1/4} \circ E$ astDeclination if Greenwich Apparent Time 28:18:10.1 (LAT 20:54:10.1) = N13°W + 2°17'04"E = $15^{1/4} \circ E$