CALCULATIONS FOR the CELESTIAL OBSERVATIONS that MERIWETHER LEWIS made at the
 THREE FORKS OF THE MISSOURI (Point of Observation No. 39 for 1805)

July 28-29, 1805

FOREWORD

While Meriwether Lewis was at Camp Island near the Three Forks of the Missouri he spent many hours preparing for and taking celestial observations. From all those observations, however, the only calculations he made were for latitude from the sun's noon altitude, July 28 and 29. Lewis's calculated latitudes, unfortunately, are nearly 30 miles farther south than the true latitude of Camp Island Camp. This difference in latitude results from his using the wrong index error for the octant. The other observations were not calculated until nearly two hundred years after Lewis took them; those observations were:

1) two sets of a.m and p.m. Equal Altitudes of the sun to check the chronometer's time,
2) three sets of Lunar Distance observations for longitude (two with the sun, one with Antares) and,
3) three sets of observations (two with the sun, one with Polaris) to determine the variation of the compass needle or magnetic declination.

Before the advent of electronic calculators and computers all the mathematical operations would have been done "long hand." Multiplication, division, powers and roots would have been done by logarithms. All operations using trigonometric functions also would have been performed using logarithms. In addition, the procedures for making the calculations usually were set out in work-sheet forms in books that had been published by mathematicians trained in making the calculations. Thus, the person doing the calculations merely filled in the observational data in the proper places and followed the outlined procedure, step by step - often without understanding the why or wherefore of the mathematical operations.

All the calculations that follow were made using an electronic calculator in a non-program mode, and the operations are set out in step-by-step fashion to help the reader follow the complex operations.

The mathematician of the Lewis-and-Clark era would have used the Nautical Almanac for the year of observation. I also used the Nautical Almanacs for 1803-1806 even though there are several excellent computer programs that can recalculate - with greater accuracy and precision than often exists in the almanacs of the time - the needed celestial information. The mathematician of the Lewis-and-Clark era also would have used standard tables such as Tables Requisite to determine the corrections for refraction and parallax and would have used numerous other tables in them to facilitate the tedious, long-hand operations. I did not have access to Tables Requisite for the years of the expedition, but used modern formulae to obtain refraction and parallax and other needed parameters. In addition, because most of the navigation tables were designed for use at sea, they do not provide values for refraction at altitudes greater than about 2000 feet.

The calculations made from Lewis's celestial observations are given below in the following sequence despite the date or time in which they were made: 1) latitude from noon observation of the sun, 2) chronometer error at noon from Equal Altitudes observations, 3) chronometer time of an observation from any other observation for which the chronometer's time and sun's altitude is given, 4) longitude from Lunar Distance observations, and 5) magnetic declination.

LATITUDE CALCULATIONS

LATITUDE from MERIDIAN ALTITUDE of the SUN - JULY 28, 1805
At our encampment on Camp Island, near the junction of the three forks of the Missouri Observed meridian altitude of the \odot^{\prime} s lower limb with octant by back observation $58^{\circ} 35^{\prime} 00^{\prime \prime}$ Latitude deduced from this observation $45^{\circ} 24^{\prime} 54^{\prime \prime}$

Calculations for Latitude from the Meridian Observation of the Sun - July 28, 1805

$\begin{aligned} & 58^{\circ} 35^{\prime} \\ & \frac{04^{\circ} 23^{\prime} 20.6^{\prime \prime}}{54^{\circ} 11^{\prime} 39.4^{\prime \prime}} \end{aligned}$	observed supplement of the double altitude of the sun's lower limb octant's index error in the back observation observed angle, corrected for Index error
$180^{\circ} 00^{\prime} 00.0{ }^{\prime \prime}$	
- 54*11'39.4"	observed angle, corrected for Index error
$125^{\circ} 48^{\prime} 20.6 "$	apparent double altitude of sun's lower limb
$\div \quad 2$	using the artificial horizon doubles the angle observed, divide by 2
$62^{\circ} 54{ }^{\prime \prime} 10$	apparent altitude of sun's lower limb $=\mathrm{H}$
- 0000'24"	refraction correction ${ }^{1}$
+ $00^{\circ} 00^{\prime} 04 \prime$	parallax correction ${ }^{2}$
+ 00¹5'47"	sun's semidiameter ${ }^{3}$
6309'37"	altitude of sun's center with respect to earth's center
- 1859'40"	sun's north declination at observation ${ }^{4}$
$44^{\circ} 09^{\prime} 57{ }^{\prime \prime}$	co-latitude
$90^{\circ} 00^{\prime} 00^{\prime \prime}$	zenith
- $44^{\circ} 09^{\prime} 57{ }^{\prime \prime}$	co-latitude
$45^{\circ} 50 \cdot 03{ }^{\prime \prime}$	latitude per this observation
$45^{\circ} 50{ }^{\prime}$	latitude as octant can be read only to $1 / 2^{\prime}(30$ ") of arc
$45^{\circ} 55^{1 / 2}$	approximate actual latitude from Courses and Distances

Lewis's method (using correct index error and same corrections for refraction and parallax as above)

$58^{\circ} 35^{\prime}$	erved complement of the double altitude of the sun's lower limb
$\begin{array}{r}+\quad 2 \\ \hline\end{array}$	
29 ${ }^{\circ} 17{ }^{\prime \prime}$	observed angle halved
90°	
$\underline{29}{ }^{\circ} 17^{\prime} 30^{\prime \prime}$	
6042'30"	altitude of sun's lower limb including index error, refraction and parallax
+2 ${ }^{\circ} 11^{\prime} 40^{\prime \prime}$	one half of the octant's index error ${ }^{5}$
$62^{\circ} 54{ }^{\prime \prime} 0^{\prime \prime}$	apparent altitude of the sun's lower limb = H
- $0^{\circ} 00^{\prime} 20^{\prime \prime}$	refraction correction
+0 $0^{\circ} 15^{\prime} 47{ }^{\prime \prime}$	sun's semidiameter
63 $09^{\prime} 37{ }^{\prime \prime}$	
18* ${ }^{\circ} 9^{\prime} 40^{\prime \prime}$	sun's north declination
$44^{\circ} 09^{\prime} 57{ }^{\prime \prime}$	co-latitude
90°	
$45^{\circ} 50 \cdot 03^{\prime \prime}$	latitude per this observation

[^0]
LATITUDE CALCULATIONS

LATITUDE from MERIDIAN ALTITUDE of the SUN - JULY 29, 1805

[At our encampment on Camp Island, near the junction of the three forks of the Missouri]

Observed meridian altitude of the \odot^{\prime} s lower limb with octant by back observation	$59^{\circ} 07^{\prime}$
Latitude deduced from this observation	$45^{\circ} 23^{\prime} 23.1^{\prime \prime}$
Mean latitude from two meridian altitudes of \odot 's lower limb	$45^{\circ} 24^{\prime} 08.5^{\prime \prime}$

Calculations for Latitude from Meridian Observation of the Sun - July 29, 1805

$59^{\circ} 07^{\prime}$
$-\quad 04^{\circ} 23^{\prime} 20.6^{\prime \prime}$
$54^{\circ} 43^{\prime} 39.4^{\prime \prime}$

$180^{\circ} 00^{\prime} 00.0^{\prime \prime}$

- $\quad 54^{\circ} 43^{\prime} 39.4^{\prime \prime}$
$125^{\circ} 16^{\prime} 20.6^{\prime \prime}$
$\div \quad 2$
$62^{\circ} 38^{\prime} 10^{\prime \prime}$
- $00^{\circ} 00^{\prime} 24^{\prime \prime}$
+ 0000'04"
$+\quad 00^{\circ} 15^{\prime} 47^{\prime \prime}$
$62^{\circ} 53^{\prime} 37{ }^{\prime \prime}$
- $18^{\circ} 45^{\prime} 36^{\prime \prime}$
$44^{\circ} 08^{\prime} 01^{\prime \prime}$
$90^{\circ} 00^{\prime} 00^{\prime \prime} \quad z e n i t h$
- $44^{\circ} 08^{\prime} 01^{\prime \prime} \quad$ co-latitude
$45^{\circ} 51^{\prime} 59$ " latitude per this observation
$45^{\circ} 52^{\prime}$
$45^{\circ} 55^{1 / 2}$
octant's index error in the back observation
observed angle, corrected for Index error
observed angle, corrected for Index error
apparent double altitude of sun's lower limb
apparent altitude of sun's lower limb $=\mathrm{H}$
refraction correction
parallax correction ${ }^{2}$
sun's semidiameter ${ }^{3}$
sun's north declination at observation
co-latitude
observed supplement of the double altitude of sun's lower limb
altitude of sun's center with respect to earth's center
latitude as octant can be read only to $1 / 2^{\prime}(30 ")$ of arc
approximate actual latitude from Courses and Distances
average of recalculated observations for 28 and 29 July 1805: $45^{\circ} 50^{\prime} 03^{\prime \prime}+45^{\circ} 51^{\prime} 59^{\prime \prime}=$
average of recalculated observations for 28 and 29 July to nearest 30" =
average latitude for 28 and 29 July 1805 as calculated by Lewis $=$
$45^{\circ} 24$ '08.5

1. Lewis would have used Tables Requisite. The equation used here to calculate the correction for refraction is: [(983 x Bar Pressure in inches) $\div\left(460+\right.$ Temp $\left.\left.{ }^{\circ} \mathrm{F}\right)\right]$ x cotangent H
2. Lewis would have used Tables Requisite. The equation used here to calculate the correction for the sun's parallax is: $8.794 \times$ cosine H
3. Sun's noon semidiameter at 0° longitude: 25 July, 15'46.7"; 1 August. 15'47.5"
4. Sun's noon declination at 0° longitude: 29th, $+18^{\circ} 50^{\prime} 01^{\prime \prime} ; 30$ th, $+18^{\circ} 35^{\prime} 44^{\prime \prime}$)

Observed equal altitudes of \odot with sextant
h m s
h m s
A.M. 84210

PM 42146 accurate
42321 doubtful Altitude at the time of observation $72^{\circ} 08^{\prime} 15^{\prime \prime}$

84342	42321	doubtful
84515		lost by clouds

Calculations for Chronometer Error from Equal Altitudes of the Sun - July 28, 1805

LL - C	C - UL	LL-C	C - UL	LL = lower limb, C = center, UL = upper limb
$8: 45: 15$	$8: 43: 42$	lost	$4: 23: 21$	
$8: 43: 42$	$8: 42: 10$	$4: 23: 21$	$4: 21: 46$	
$0: 01: 33$	$0: 01: 32$	$?$	$0: 01: 35$	$4: 21: 46+1 \mathrm{~m} 33 \mathrm{~s}=4: 23: 19$ center

Average chronometer time of the AM observation (center only)	08h43m42s
Average chronometer time of the PM observation (center only)	16h23m19s
Middle time $=(\mathrm{AM} \mathrm{time}+\mathrm{PM}$ time $) \div 2=$	12h33m30.5s
$1 / 2$ Elapsed time $=(\mathrm{PM}$ time -AM time $) \div 2=7 \mathrm{~h} 39 \mathrm{~m} 37 \mathrm{~s} \div 2=$	03h49m48.5s
Latitude of Point of Observation; average of observations July 28 and 29, nearest 30"	$45^{\circ} 51^{\prime} \mathrm{N}^{1}$
Sun's declination; 0° long. noon: 28th: $19^{\circ} 04^{\prime} 00 \prime$ '; 29th: $18^{\circ} 50^{\prime} 01^{\prime \prime}$; at noon $111^{\circ}{ }^{\circ}$	+18*59'41'
Middle time of the observation by chronometer (center and center "corrected")	12h33m30.5s
Change in declination; daily: -13.98'; hourly: -34.96"; correction for change ${ }^{3}=$	+ 8.9s
Calculated chronometer time of Local Apparent Noon	12h33m39.4s
Local Apparent Time of Noon when sun is on the meridian	$\underline{12 \mathrm{~h} 00 \mathrm{m00.0s}}$
Chronometer too fast on Local Apparent Time	33 m 39.4 s
Local Apparent Time of Noon when sun is on the meridian	12h00m00.0s
Equation of Time at observation ${ }^{4}$	+6m04.1s
Local Mean Time of Solar Noon	12h06m04.1s
Chronometer time of Local Apparent Noon	12h33m39.4s
Chronometer too fast on Local Mean Time	27 m 35.3 s

1. True latitude: $45^{\circ} 54^{\prime} 44^{\prime \prime}$

2. True longitude: $111^{\circ} 30^{\prime} 40^{\prime \prime}$
3. Correction for change in declination either from: Bowditch, Nathaniel, 1837 (reprinted 1864), The New American Practical Navigator,

E \& G. W. Blunt, New York, p. 219-220 or Ingram, E.L., 1911, Geodetic Surveying, McGraw Hill Book Co., p. 176-179. See following page.
4. In the 1805 Nautical Almanac, find the Equation of Time for July $28(+6 \mathrm{~m} 04.4 \mathrm{~s})$ and July $29(+6 \mathrm{~m} 03.3 \mathrm{~s})$ then either ratio the values
to the Greenwich Apparent Time of the observation of $19 \mathrm{~h} 24 \mathrm{~m}\left[12 \mathrm{~h}+\left(111^{\circ} \div 15\right)\right.$] or use Table VI in Tables Requisite.

Bowditch's Method for Correction for Sun's Changing Declination (modified to use without logs)
First part of the Correction =
$180 \div[0.066667 \times$ cotangent Latitude \times sine $(1 / 2$ ET $\times 15) \times(180 \div$ ET $) \times(180 \div$ Declin change per day $)]$ $180 \div\left[0.066667 \times\right.$ cotangent $45^{\circ} 51^{\prime} \times$ sine $\left.(7 \mathrm{~h} 39 \mathrm{~m} 37 \mathrm{~s} \times 7.5) \times(180 \div 7 \mathrm{~h} 39 \mathrm{~m} 37 \mathrm{~s}) \times\left(180 \div 13.98^{\prime}\right)\right]$
$180 \div[0.066667 \times 0.970752 \times 0.842942 \times 23.497842 \times 12.875536]=16.504692=10.91 \mathrm{~s}$
Second part of the Correction $=$
$180 \div[0.066667 \times$ cotangent Declin \times tangent $(1 / 2$ ET $\times 15) \times(180 \div$ ET $) \times(180 \div$ Dec change per day $)]$
$180 \div\left[0.066667 \times\right.$ cotangent $\left.18^{\circ} 59^{\prime} 41^{\prime \prime} \mathrm{x} \tan (7 \mathrm{~h} 39 \mathrm{~m} 37 \mathrm{~s} \times 7.5) \times(180 \div 7 \mathrm{~h} 39 \mathrm{~m} 37 \mathrm{~s}) \times\left(180 \div 13.98^{\prime}\right)\right]$
$180 \div[0.066667 \times 2.905080 \times 1.566792 \times 23.4978420 \times 12.875536]=91.789903=1.96 \mathrm{~s}$
where ET = Elapsed Time
The first part of the correction is to be added to the Middle Time when the Sun is receding from the elevated pole (June 22-December 21 in the Northern Hemisphere) and subtracted from the Middle Time when it is advancing toward it (December 22 - June 21 in the Northern Hemisphere)... +10.9 s

The second part of the correction is to be added to the Middle Time when the Declination is increasing (December 22 - June 21), but subtracted from the Middle Time when it is decreasing (June 22-December 21)... -2.0s

Net correction for changing declination $=+10.9 \mathrm{~s}-2.0 \mathrm{~s}=+8.9 \mathrm{~s}$

Ingram's Method - modified (correction to be subtracted from the middle time)
$\{[\tan$ Lat $\div \sin (1 / 2 \mathrm{ET} \times 15)]-[(\tan \operatorname{Dec} \div \tan (1 / 2 \mathrm{ET} \times 15)]\} \times[(\Delta \mathrm{Dec} \div 15) \times 1 / 2 \mathrm{ET}]$
where: Lat = latitude
ET = elapsed time
Dec = sun's declination
$\Delta \mathrm{Dec}=$ hourly change in sun's declination
$1\left\{\left[\tan 45^{\circ} 51^{\prime} \div \operatorname{sine}(3 h 49 \mathrm{~m} 48.5 \mathrm{~s} \times 15)\right]-\left[\tan 18^{\circ} 59^{\prime} 41^{\prime \prime} \div \tan (3 \mathrm{~h} 49 \mathrm{~m} 48.5 \mathrm{~s} \times 15)\right]\right\} \times[(-34.96 \div 15) \times$ 3h49m48.5s]
$2[(1.030120 \div \operatorname{sine} 57.452083)-(0.344225 \div \tan 57.452083)] \times(-2.330667 \times 3 \mathrm{~h} 49 \mathrm{~m} 48.5 \mathrm{~s})$
$3(1.030120 \div 0.843942)-(0.344225 \div 1.566792)$
4 (1.222053-0.219700)x-8.926777
$51.002353 \times 9.926777=-8.9$ seconds (subtract a minus $8.9 \mathrm{sec}=$ add 8.9 seconds)

CHRONOMETER ERROR at NOON from EQUAL ALTITUDES of the SUN - JULY 29, 1805 (page 1 of 2)

Observed equal altitudes of the sun with sextant
h m s h m s
A.M. $85705.5 \quad$ P.M. 40550
$85841 \quad 40724$
Altitude by sextant at the time of observation $77^{\circ} 04^{\prime} 45^{\prime \prime}$
$90014 \quad 40859$

Calculations for Chronometer Error from Equal Altitudes of the Sun - July 29, 1805

LL - C	C - LL	LL - C	C - UL	
9:00:14	8:58:41	4:08:59	4:07:24	LL = lower limb, C = center, UL = upper limb
8:58:41	8:57:05.5	4:07:24	4:05:50	
0:01:33	0:01:36.5	0:01:35	0:01:34	
9:00:14	:57:05.5	m08.5s;	8:59-4	$3 \mathrm{m09s}$

Average chronometer time of the AM observation (UL and LL only)	08h58m39.75s
Average chronometer time of the PM observation (UL and LL only)	16 h 07 m 24.5 s
Middle time $=(\mathrm{AM} \mathrm{time}+\mathrm{PM}$ time $) \div 2=$	12 h 33 m 02.13 s
$1 / 2$ Elapsed time $=(P M$ time -AM time $) \div 2=7 \mathrm{~h} 08 \mathrm{~m} 44.75 \mathrm{~s}=\div 2=$	03h34m22.37s
Latitude of the Point of Observation ${ }^{1}$; average of observation July 28th and 29th	$45^{\circ} 51{ }^{\prime}{ }^{1}$
Sun's declination; 0° long. noon; 29th: $18^{\circ} 50^{\prime} 01^{\prime \prime}$; 30th: $18^{\circ} 35^{\prime} 44^{\prime \prime}$; at Noon $111^{\circ}{ }^{\text {2 }}$	+18* $45{ }^{\prime} 37{ }^{\prime \prime}$
Middle time of the observation by chronometer	12h33m02.2s
Change in declination; daily: -14.28'; hourly: -35.71"; correction for change ${ }^{3}=$	$+\quad 8.8 \mathrm{~s}$
Calculated chronometer time of Local Apparent Noon	12h33m11.0s
Local Apparent Time of Noon when sun is on the meridian	-12h00m00.0s
Chronometer too fast on Local Apparent Time	$33 \mathrm{m11.0s}$
Local Apparent Time of Noon when sun is on the meridian	$12 \mathrm{h00m00.0s}$
Equation of Time ${ }^{4}$	+ $6 \mathrm{m02.8s}$
Local Mean Time of Solar Noon	12 h 06 m 02.8 s
Chronometer time of Local Apparent Noon	12 h 33 m 11.0 s
Chronometer too fast on Local Mean Time	$27 \mathrm{m08.2s}$

Date	Chronometer fast Local Apparent Time	Chronometer fast Local Mean Time
28	$0 h 33 \mathrm{~m} 39.4 \mathrm{~s}$	Oh27m35.3s
29	$\underline{\text { Oh33m11.0s }}$	Oh27m08.2s

the above data show that the chronometer was losing about 27 seconds per day on Local Mean Time $=1.125$ seconds per hour. The calculations made for time of observation using latitude, sun's altitude (index error 8'45") and sun's declination, however, suggest that, between observations, the chronometer was losing about $2.5 \mathrm{~s} / \mathrm{hr}$ (60 seconds per day), see Local Time - Summary

1. True latitude: $45^{\circ} 55^{\prime} 44^{\prime \prime} \mathrm{N}$.
2. True longitude: $111^{\circ} 30^{\prime} 40^{\prime \prime} \mathrm{W}$
3. See footnote 3 for Local Time Calculations, 1805 July 28 and page 2 of 2 for that observation.
4. See footnote 4 for Local Time Calculations, 1805 July 28. Equation of Time at 0° Iongitude noon on 29 July: $+6 \mathrm{~m} 03.3 \mathrm{~s} ; 30 \mathrm{July}$: $+6 \mathrm{~m} 01.6 \mathrm{~s}$

LOCAL TIME CALCULATIONS

TIME of EQUAL ALTITUDES OBSERVATIONS

 from LATITUDE and SUN'S DECLINATION and ALTITUDEJULY 28, 1805 (page 1 of 1)
True Altitude of Sun's Center
$8: 43: 42$ - estimated 34 m fast $=8: 10+7: 24=15: 34 ; 16: 23: 21-$ est. 33 m 30 s fast $=15: 48+7: 24=23: 12$

AM		PM
$72^{\circ} 08^{\prime \prime} 15^{\prime \prime}$	observed double altitude of sun's center	$72^{\circ} 08^{\prime \prime} 15^{\prime \prime}$
00 ${ }^{\circ} 08^{\prime} 45^{\prime \prime}$	index error	0008'45"
$71^{\circ} 59{ }^{\prime \prime}$	double altitude corrected for index error	$71^{\circ} 59{ }^{\prime \prime}$
\cdots		
35 ${ }^{\circ} 59{ }^{\prime \prime}{ }^{\prime \prime}$	apparent altitude of center $=\mathrm{H}$	$35^{\circ} 59 ' 45 "$
- $0^{\circ} 01^{\prime} 08^{\prime \prime}$	refraction (see Latitude, footnote 1)	- $0^{\circ} 01^{\prime \prime} 04$
+0 ${ }^{\circ} 00^{\prime} 07 \prime$	parallax (see Latitude, footnote 2)	+0 $0^{\circ} 00^{\prime} 07{ }^{\prime \prime}$
$35^{\circ} 58{ }^{\prime \prime} 4{ }^{\prime \prime}$	altitude of sun's center per this observation	$35^{\circ} 58^{\prime} 48^{\prime \prime}$

Sun's declination at noon 0° Iongitude; 28th; $19^{\circ} 04^{\prime} 00^{\prime \prime}$; declination 29th: $18^{\circ} 50^{\prime} 01^{\prime \prime}$ Sun's declination at observation ($111^{\circ} \mathrm{W}$); $\mathrm{AM}=19^{\circ} 01^{\prime} 55^{\prime \prime} ; \mathrm{PM}=18^{\circ} 57^{\prime} 28^{\prime \prime}$

Local Apparent Time of AM Observation - July 28, 1805
$A=$ Latitude (average of Lewis's two Meridian Altitude observations) $=45^{\circ} 51^{\prime}=\quad 45.850000^{\circ}$
$B=$ True altitude of sun's center $(A M)=35^{\circ} 58^{\prime} 44^{\prime \prime}=\quad 35.978889^{\circ}$
$C=(A+B) \div 2=\quad 40.914444^{\circ}$
$D=B-C($ absolute $)=$
04.935556°
$E=1 / 2$ polar distance $\left(90^{\circ}-\right.$ declination $)=1 / 2\left(90^{\circ}-19^{\circ} 01^{\prime} 55^{\prime \prime}\right)=1 / 270.968056^{\circ}=\quad 35.484028^{\circ}$
$F=$ tangent $^{-1}$ cotangent $C \times$ tangent $D \times$ cotangent $E=$
$=$ tangent $^{-1} 1.153844 \times 0.086355 \times 1.402775=0.139773=07.956877^{\circ}$
$G=E \pm F=35.483960^{\circ}-7.957212^{\circ 1} \quad 27.527151^{\circ}$
$H=$ cosine $^{-1}$ tangent $A \times$ tangent $G^{2}=1.030120 \times 0.521169=0.536867=\quad 57.529390^{\circ}$
I = 12-(H $\div 15)=57.529390^{\circ} \div 15=$ Hour Angle $^{h}=12-3.835293 \mathrm{~h}=$ LAT of obs \quad 08:09:53.0
Chronometer fast on Local Apparent Time: 8:43:42.0-8:09:53.0 $=$
33m49.0s
Chronometer fast on Local Mean Time: 8:43:42-(8:09:53+6m04.2s) $=\quad 27 \mathrm{~m} 44.8 \mathrm{~s}$
Local Apparent Time of PM Observation - July 28, 1805
$A=$ Latitude (average of Lewis's two Meridian Altitude observations) $=45^{\circ} 51^{\prime} 01^{\prime \prime}=\quad 45.850000^{\circ}$
$B=$ True altitude of sun's center $(P M)=35^{\circ} 58^{\prime} 48^{\prime \prime}=\quad 35.980000^{\circ}$
$C=(A+B) \div 2=$
40.915000°
$D=B-C($ absolute $)=$
04.935000°
$E=1 / 2$ polar distance $\left(90^{\circ}\right.$ - declination $)=1 / 2\left(90^{\circ}-18^{\circ} 57^{\prime} 28^{\prime \prime}\right)=1 / 271.042222^{\circ}=\quad 35.521111^{\circ}$
$\mathrm{F}=$ tangent $^{-1}$ cotangent $\mathrm{C} \times$ tangent $\mathrm{D} \times$ cotangent $\mathrm{E}=$
$=$ tangent $^{-1} 1.153821 \times 0.086346 \times 1.400856=0.139564=07.945090^{\circ}$
$G=E \pm F=35.521111^{\circ}-7.945090^{\circ 1} \quad 27.576022^{\circ}$
$\mathrm{H}=$ cosine $^{-1}$ tangent $\mathrm{A} \times$ tangent G^{2}
$\operatorname{cosine}^{-1} 1.030120 \times 0.522255=0.537985=\quad 57.453445^{\circ}$

I $=12+(\mathrm{H} \div 15)=57.453445^{\circ} \div 15=$ Hour Angle $^{\mathrm{h}}=12+3.830230 \mathrm{~h}=$ LAT of obs \quad 15:49:48.8
Chronometer fast on Local Apparent Time: 16:23:19.0-15:49:48.0 $=$
33 m 30.2 s
Chronometer fast on Local Mean Time: 16:23:19-(15:49:48 + 6m03.9s)
27m27.1s

Average of AM and PM, Local Apparent Time $=33 \mathrm{~m} 39.6 \mathrm{~s}$, by Equal Altitudes at noon $=33 \mathrm{~m} 39.4 \mathrm{~s}$
Average of AM and PM, Local Mean Time $=\quad 27 \mathrm{~m} 36.0 \mathrm{~s}$, by Equal Altitudes at noon $=27 \mathrm{~m} 35.3 \mathrm{~s}$

1. Subtract when A is greater than B, otherwise add.
2. Take the supplement to 180° when F is greater than E

LOCAL TIME CALCULATIONS

TIME of AM MAGNETIC OBSERVATION from LATITUDE and SUN'S DECLINATION and ALTITUDE JULY 29, 1805 (page 1 of 1)

๑'s magnetic azimuth

Time by chrono- meter	Azimuth by circumferentor \circ	Altitude of \odot 's lower limb with sextant \circ
	h m s	

Calculations for Magnetic Declination from AM Observations with the Sun - July 29, 1805

Recalculated latitud	bservations of 1805 July 28 and 29) =	$45^{\circ} 51{ }^{\prime} \mathrm{N}$
Average time by ch	ometer: 8:48:09 am + 8:53:57 am $=17: 42: 06 \div 2=$	8:51:03
Calculated Local Ap	rent Time $=8: 51: 03$ - estimated 33 m fast $=$	8:18
Greenwich Apparen	ime $=$ Calculated Local Apparent Time $+111^{\circ} \div 15^{\circ}=7: 24=$	15:42
Sun's declination; 2	: $18^{\circ} 50{ }^{\prime} 01$ '; 30 th: $18^{\circ} 35^{\prime} 44{ }^{\prime \prime}$; at 15:42 Greenwich App Time $=$	$18^{\circ} 47^{\prime} 49^{\prime \prime}$
$73^{\circ} 59 ' 07.5^{\prime \prime}$	observed double altitude of sun by sextant	
-008'45.0"	sextant's index error	
$73^{\circ} 50 ' 22.5^{\prime \prime}$		
7		
$36^{\circ} 55^{\prime \prime 11}$	apparent altitude $=\mathrm{H}$	
- $0^{\circ} 01^{\prime} 05{ }^{\prime \prime}$	refraction (see Latitude, footnote 1)	
+0 ${ }^{\circ} 00^{\prime} 07{ }^{\prime \prime}$	parallax (see Latitude, footnote 2)	
+0 ${ }^{\circ} 15^{\prime} 47{ }^{\prime \prime}$	sun's semidiameter (Jul 25: 15'46.7'; Aug 1: 15 '47.5', at obs	${ }^{\circ}=15{ }^{\prime} 47.2{ }^{\prime \prime}$
$37^{\circ} 10^{\prime} 00{ }^{\prime \prime}$	altitude of sun's center per this observation	

Time of Magnetic Declination Observation from Declination, Altitude and Latitude
$\mathrm{A}=$ Latitude 45.850000°
$B=$ True altitude sun's center $37.166667^{\circ} \quad\left(37^{\circ} 10^{\prime} 00^{\prime \prime}\right)$
$C=(A+B) \div 2$
$D=B-C$ (absolute)
$E=1 / 2$ polar distance $\quad 35.601528^{\circ} \quad 1 / 2$ of $\left(90^{\circ}-18^{\circ} 47^{\prime} 49^{\prime \prime}\right)$
$F=\tan ^{-1} \cot C \times \tan D x \cot E$
06.832705°
$G=E \pm F(-$ if $A>B)$
$H=\cos ^{-1} \tan A x \tan G$
I $=\mathrm{H} \div 15=$ Hour angle
LAT $=12-\mathrm{I}=12-3.703813=\quad 08.296187 \mathrm{~h}=$ 8:17:46.3 Local Apparent Time of observation ave
Chronometer time (average)
$08.850833 \mathrm{~h}=8: 51: 03.0$
Chronmeter fast LAT at observation $\quad 00.554328 \mathrm{~h}=\quad 0: 33: 16.7$ seconds
Chronometer fast LMT at observation $=8: 51: 03-(8: 17: 46.3+6 \mathrm{~m} 04.2 \mathrm{~s})=27 \mathrm{~m} 12.5 \mathrm{~s}$

LOCAL TIME CALCULATIONS

TIME of AM EQUAL ALTITUDES OBSERVATION from LATITUDE and SUN'S DECLINATION and ALTITUDE JULY 29, 1805 (page 1 of 1)

Observed equal altitudes of the sun with sextant

A.M.	h m s		hm s	Altitude by sextant at the time of observation $77^{\circ} 04^{\prime} 45{ }^{\prime \prime}$
	85705.5	P.M.	40550	
	85841		40724	
	90014		40859	

True Altitude of Sun's Center
AM
$77^{\circ} 04^{\prime} 45^{\prime \prime} \quad$ altitude by sextant at the time of observation
-0 $0^{\circ} 08^{\prime} 45^{\prime \prime}$ sextant's index error
$76^{\circ} 56^{\prime} 00^{\prime \prime}$
$\div \frac{2}{\div 3^{\circ} 28^{\prime} 00^{\prime \prime}}$
H
$-0^{\circ} 01^{\prime} 01^{\prime \prime} \quad$ refraction (see Latitude, footnote 1)
$+0^{\circ} 00^{\prime} 07^{\prime \prime}$ parallax (see Latitude, footnote 2)
$38^{\circ} 27^{\prime} 06^{\prime \prime} \quad$ altitude of sun's center per this observation
Recalculated latitude (observations of 1805 July 28 and 29) $=\quad 45^{\circ} 51^{\prime} \mathrm{N}$
Average time by chronometer $\mathrm{AM}=\quad$ 8:58:39.75

Calculated Local Apparent Time $=8: 58: 40$ - estimated 33 m fast $=\quad$ 8:26
Greenwich Apparent Time $=$ Calculated Local Apparent Time $+111^{\circ} \div 15^{\circ}=7: 24=\quad 15: 50$
Sun's declination; Jul 29: $18^{\circ} 50^{\prime} 01^{\prime \prime}$; Jul 30: $18^{\circ} 35^{\prime} 44$ "; at 15:50 Greenwich App Time $=18^{\circ} 47^{\prime} 44^{\prime \prime}$
Time of AM Observation from Declination, Altitude and Latitude
$\mathrm{A}=$ Latitude 45.850000°
$B=$ True altitude sun's center $\quad 38.451667^{\circ} \quad\left(38^{\circ} 27^{\prime} 06{ }^{\prime \prime}\right)$
$C=(A+B) \div 2 \quad 42.150833^{\circ}$
$D=B-C$ (absolute) 03.699167°
$E=1 / 2$ polar distance $\quad 35.602222^{\circ} \quad 1 / 2$ of $\left(90^{\circ}-18^{\circ} 47^{\prime} 44^{\prime \prime}\right)$
$\mathrm{F}=\tan ^{-1} \cot \mathrm{C} \times \tan \mathrm{D} \times \cot \mathrm{E} \quad 05.696807^{\circ}$
$G=E \pm F(-$ if $A>B) \quad 29.905415^{\circ}$
$\mathrm{H}=\cos ^{-1} \tan \mathrm{Ax} \tan \mathrm{G} \quad 53.667188^{\circ}$
$\mathrm{I}=\mathrm{H} \div 15=$ Hour angle $\quad 03.577813 \mathrm{~h}=03: 34: 40.1$
LAT $=12=\mathrm{I}=12-3.577813=08.422187 \mathrm{~h}=08: 25: 19.9$ Local Apparent Time of obs ave
Chronometer time (average) $\quad 08.977824 \mathrm{~h}=08: 58: 40.2$
Chronometer fast LAT at observation $\quad 00.555497 \mathrm{~h}=00: 33: 20.3$ seconds
Chronometer fast LMT at observation $=8: 58: 40.2-(8: 25: 19.9+6 \mathrm{~m} 03.0 \mathrm{~s})=27 \mathrm{~m} 17.3 \mathrm{~s}$
Using an index error of 8' makes the chronometer 33m18.0s fast on LAT for this observation Using an index error of 7 ' makes the chronometer 33m14.9s fast on LAT for this observation

LOCAL TIME CALCULATIONS
TIME of PM EQUAL ALTITUDES OBSERVATION from LATITUDE and SUN'S DECLINATION and ALTITUDE JULY 291805 (page 1 of 1)

Observed equal altitudes of the sun with sextant

A.M.	hm s		h m s	Altitude by sextant at the time of observation $77^{\circ} 04^{\prime} 45{ }^{\prime \prime}$
	85705.5	P.M.	40550	
	85841		40724	
	90014		40859	

	Time	Azimuth
P.M.	Altitude (lower limb)	
50747	S 72 W	554430
51304	S 73 W	535245

Recalculated latitude (observations of 1805 July 28 and 29) $=\quad 45^{\circ} 51^{\prime} \mathrm{N}$
Average time by chronometer PM $=$ 17:10:25.5

Calculated Local Apparent Time $=17: 10: 25.5$ - estimated 33 m fast $=\quad$ 16:37
Greenwich Apparent Time $=$ Calculated Local Apparent Time $+111^{\circ} \div 15^{\circ}=7: 24=\quad 24: 01$
Sun's declination; Jul 29: $18^{\circ} 50^{\prime} 01^{\prime \prime}$; Jul 30: $18^{\circ} 35^{\prime} 44^{\prime \prime}$; at 22:58 Greenwich App Time $=18^{\circ} 42^{\prime} 52^{\prime \prime}$

Calculated Local Apparent Time of PM Magnetic Declination Observation

$A=$ Latitude (average of Lewis's two Meridian Altitude observations) $=45^{\circ} 51^{\prime}=\quad 45.850000^{\circ}$
$B=$ True altitude of sun's center (average) $=27^{\circ} 34^{\prime} 21^{\prime \prime} \quad 27.572500^{\circ}$
$C=(A+B) \div 2=$
36.711250°
$D=B-C($ absolute $)=$ 09.138750°
$E=1 / 2$ polar distance $\left(90^{\circ}-\right.$ declination $)=1 / 2\left(90^{\circ}-18^{\circ} 42^{\prime} 52^{\prime \prime}\right)=\quad 35.642778^{\circ}$
$F=$ tangent $^{-1}$ cotangent $C \times$ tangent $D \times$ cotangent $E=$
$=$ tangent $^{-1} 1.341053 \times 0.160868 \times 1.394584=0.300857=16.744274^{\circ}$
$G=E \pm F=35.642778^{\circ}-16.744274^{\circ 1}=\quad 18.898504^{\circ}$
$\mathrm{H}=$ cosine ${ }^{-1}$ tangent $\mathrm{A} \times$ tangent G^{2}
cosine ${ }^{-1} 1.030120 \times 0.342347=0.352659=69.349978^{\circ}$

I $=12+(\mathrm{H} \div 15)=69.349978^{\circ} \div 15=$ Hour Angle $^{\mathrm{h}}=12+4.623332=$ LAT of obs \quad 16:37:24.0
Chronometer too fast on Local Apparent Time $=17: 10: 25.5-16: 37: 24.0=$
33m01.5s
Chronometer too fast on Local Mean Time - 17:10:25.5-(16:37:24 + 6m02.4s) $=$
26m59.0s

1. Subtract when A is greater than B, otherwise add.
2. Take the supplement to 180° when F is greater than E.

LOCAL TIME CALCULATIONS

SUMMARY of OBSERVATIONS TAKEN and TIMES, THREE FORKS of the MISSOURI JULY 28-29, 1805 (page 1 of 1)

Day Obs	Chrono Time	Chrono fast on LAT	True LAT of Obs	GAT of Obs +7:24	Equation of Time	GMT of Obs
$28=\mathrm{Alt}$ ¢ AM	08:43:42.0	00:33:49.0	08:09:53.0	15:33:53.0	+06m04.2s	15:39:57.2
28 - noon	12:33:39.4	00:33:39.4	12:00:00.0	19:24:00.0	+06m04.1s	19:30:04.1
$28=A l t \odot P M$	16:23:19.0	00:33:30.2	15:49:48.8	23:13:48.8	+06m03.9s	23:19:52.6
29 - Magav	08:51:03.0	00:33:16.7	08:17:46.3	15:41:46.3	+06m03.0s	15:47:49.3
29 =Alt \odot AM	08:58:40.2	00:33:20.3	08:25:19.9	15:49:19.9	+06m03.0s	15:55:22.9
29 - noon	12:33:11.0	00:33:11.0	12:00:00.0	19:24:00.0	+06m02.8s	19:30:02.8
29 =AltopM	16:07:24.3	00:33:01.9	15:34:22.4	22:58:22.4	+06m02.5s	23:04:24.9
29 จ-¢1	16:23:12.6	00:33:06.4 ${ }^{1}$	15:50:06.2	23:14:06.2	+06m02.5s	23:20:08.7
29 ग-¢1	16:23:12.6	00:33:01.9 ${ }^{2}$	15:50:10.7	23:14:10.7	+06m02.5s	23:20:13.2
29 ग-¢	16:49:09.6	00:33:05.9 ${ }^{1}$	16:16:03.7	23:40:03.7	+06m02.5s	23:46:06.2
29 ग-¢2	16:49:09.6	00:33:00.9 ${ }^{2}$	16:16:08.7	23:40:08.7	+06m02.5s	23:46:11.2
29 © Magav	17:10:25.5	00:33:01.5	16:37:24.0	24:01:24.0	+06m02.5s	00:07:26.5 30th
29 Antares-c	20:57:26.8	00:33:00.9 ${ }^{1}$	20:24:25.9	27:48:25.9	+06m02.2s	03:54:28.1 30th
29 Antares-c	20:57:26.8	00:32:51.3 ${ }^{2}$	20:24:35.5	27:48:35.5	+06m02.2s	03:54:37.7 30th
29 Polaris	21:27:00	00:33:00.4 ${ }^{1}$	20:53:59.6	28:17:59.6	+06m02.2s	04:24:01.8 30th
29 Polaris	21:27:00	00:32:49.8 ${ }^{2}$	20:54:10.1	28:18:10.1	+06m02.2s	04:24:12.3 30th

Note: values in red were determined for noon from the Equal Altitudes observations for those days
Note: values in blue were derived from Patterson's Form III for finding the time of observation given the latitude, sun's altitude and sun's declination.

The trend from the AM and PM Equal Altitudes calculations (only) each day appears to show a loss of 2.46 seconds per hour $=59$ seconds per 24 h , yet the loss between noon 28 th and noon 29 th is only half that $=28.5$ seconds. This difference may result from a change in the sextant's index error from $+8^{\prime} 45^{\prime \prime}$ to some other value (need to check) or from improper winding of the chronometer. Lewis (22 July 1804) indicates the chronometer was wound at noon, but did he change that to evening after leaving Fort Mandan, inasmuch as the chronometer appears to have lost only 10 seconds between the PM Equal altitudes observation of 28 July and the AM Equal altitudes of 29 July per calculated Local Apparent Time of observation.

```
Obs = Observation
Chrono = Chronometer
LAT = Local Apparent Time
GAT = Greenwich Apparent Time
GMT = Greenwich Mean Time
= Alt = Equal Altitudes of the Sun
\odot = Sun
Mag = Magnetic Declination with Sun
\nu = Moon (Lunar Distance)
Polaris = Magnetic Declination with Polaris
```

[^1]| | Time | Distance | Time | Distance |
| :---: | :---: | :---: | :---: | :---: |
| | hm s | - ' | hm s | - ' " |
| P.M. | 41442 | 494330 | 42312 | 494630 |
| | 41724 | 494400 | 42414 | 494645 |
| | 41934 | 494445 | 42518 | 494700 |
| | 42112 | 494500 | 42626 | 494715 |
| | 42209 | $494554{ }^{2}$ | 42724 | 494730 |

1. This should have been $49^{\circ} 45^{\prime} 52.5^{\prime \prime}$ because the sextant could be read only to the nearest $71 / 2{ }^{\prime \prime}$

Calculations for Longitude from Lunar Distance from the Sun, first set of observations - July 29, 1805
Average time by chronometer time: 4:22:09.5; average separation by sextant: $49^{\circ} 45^{\prime} 48.75^{\prime \prime}$. A plot of the data, however, suggests using 4:23:12.6 p.m. and $49^{\circ} 46^{\prime} 12.2^{\prime \prime}$ as averaged from data sets 2 , 3 , and 5 through 10 .

True Time of Sun-Moon Observation No. 1 (see LOCAL TIME CALCULATIONS - Summary)

Ave chrono	fast on LAT	True LAT	$111^{\circ} \mathrm{W}$	GApp Time	Eq of Time	G Mean Time
$16: 23: 12.6$	$00: 33: 06.4$	$15: 50: 06.2$	+7 h 24 m	$23: 14: 06.2$	+06 m 02.5 s	$23: 20: 08.7$

Sun - Moon Data from Nautical Almanac Calculated for average time of first set of observations

RA Sun 29th	8 h 32 m 49.6 s	Dec Sun 29th	$+18^{\circ} 50^{\prime} 01^{\prime \prime} \mathrm{N}$	SD Sun 25th	$15^{\prime} 46.7^{\prime \prime}$
RA Sun 30th	8 h 36 m 44.5 s	Dec Sun 30th	$+18^{\circ} 35^{\prime} 44^{\prime \prime} \mathrm{N}$	SD Sun 32nd	$15^{\prime} 47.5^{\prime \prime}$
RA Sun obs	8 h 34 m 39.6 s	Dec Sun obs	$+18^{\circ} 43^{\prime} 20^{\prime \prime} \mathrm{N}$	SD Sun obs	$15^{\prime} 47.2^{\prime \prime}$

RA Moon 29th 12h	$168^{\circ} 36^{\prime}$	$=11 \mathrm{~h} 14 \mathrm{~m} 24 \mathrm{~s}$	Dec Moon 29th 12h	$0^{\circ} 12^{\prime} \mathrm{S}$
RA Moon 29th 24h	$174{ }^{\circ} 48^{\prime}$	$=11 \mathrm{~h} 29 \mathrm{~m} 12 \mathrm{~s}$	Dec Moon 29th 24h	$3^{\circ} 08^{\prime} \mathrm{S}$
RA Moon at obs	$174{ }^{\circ} 24^{\prime}$	$=11 \mathrm{~h} 37 \mathrm{~m} 36 \mathrm{~s}$	Dec Moon at obs	-2 ${ }^{\circ} 56{ }^{\prime} 47{ }^{\prime \prime}$
SD Moon 29th 12h	15'59"	HP Moon 29th 12h	58'40" Eq of	me 29th $+6: 03.3$
SD Moon 29th 24h	15'52"	HP Moon 29th 24h	58'12" Eq of	me 30th +6:01.6
SD Moon at obs	15'52"	HP Moon at obs	58'14" Eq	me obs +6:02.5

```
RA = right ascension
Dec = declination
SD = semidiameter
HP = horizontal parallax
Eq = equation
obs = observation
```


LONGITUDE CALCULATIONS

LONGITUDE from LUNAR DISTANCE from the SUN - FIRST SET of OBSERVATIONS JULY 29, 1805 (page 2 OF 5)

True Altitude of the Sun's center at the time of Sun-Moon, first set of observations - July 29, 1805

1. Add if Declination and Latitude are of different signs or C is greater than 90°)

Apparent ("observed") Altitude of the Sun's Center

	Refraction $=\left[\left(983 x\right.\right.$ inches $\mathrm{Hg} \div\left(460+t^{\circ} \mathrm{F}\right) \mathrm{x}$ cotangent Hc (1st trial), then $\left\{\left[(983 \times 25.79) \div\left(460+70^{\circ}\right]\right\} \div 3600\right\} \times \cot \mathrm{Hc}$, then $\mathrm{Ha} ; \mathrm{G}_{1}=0.013287 \times \mathrm{co}$	Ha
$\mathrm{G}_{2}=$	Parallax $=[(8.794 \div 1.015 \mathrm{AU}) \div 3600] \times \cos \mathrm{Hc}$ (1st trial), then Ha afterwards $(8.664 \div 3600) \times \cos \mathrm{Hc}$, then $\mathrm{Ha} ; \mathrm{G}_{2}=0.002407 \mathrm{x} \cos \mathrm{Hc}, \mathrm{Ha}$	
$\mathrm{H}=$	1) $35.768073^{\circ}+\left(\cot 35.768073^{\circ} \times 0.013287\right)-\left(\cos 35.768073^{\circ} \times 0.002407\right)=$	35.784565° (Ha1)
	2) $35.784565^{\circ}-\left(\cot 35.784565^{\circ} \times 0.013287\right)+\left(\cos 35.784565^{\circ} \times 0.002407\right)=$	35.768084°
	3) $35.768084^{\circ}-35.768073^{\circ}(\mathrm{Hc})=+0.000011^{\circ}$	
	4) $35.784565^{\circ}-0.000011^{\circ}=35.784554^{\circ}=\mathrm{Ha} 2$	
	5) $35.784554^{\circ}-\left(\cot 35.784554^{\circ} \times 0.01327\right)+\left(\cos 35.784554^{\circ} \times 0.002407\right)=$	$35.768073^{\circ}=\mathrm{Hc}$
	Therefore the sun's apparent altitude (Ha) =	$35.784554{ }^{\circ}$
	$\Delta \mathrm{h}$) $=35.784554^{\circ}-35.768073^{\circ}=0.016481^{\circ}$	$35^{\circ} 47{ }^{\prime \prime} 0{ }^{\prime \prime}$

Moon's Hour Angle at Time of Observation

1. Sun's Right Ascension at the time of the observation 08h34m39.6s
2. Local Apparent Time of the observation, pm =

03 h 50 m 06.2 s
3. Sum = Right Ascension of the Meridian at time of observation

12 h 24 m 45.8 s
4. Moon's Right Ascension at time of the observation $=$

11 h 37 m 36.0 s
5. Moon's Hour Angle in Time
$00 \mathrm{~h} 47 \mathrm{m09.8s}$
True Altitude of the Moon's Center

[^2]
LONGITUDE CALCULATIONS

LONGITUDE from LUNAR DISTANCE from the SUN - FIRST SET of OBSERVATIONS JULY 29, 1805 (page 3 of 5)

Apparent ("observed") Altitude of Moon’s Center

```
G}=\mathrm{ Refraction = 0.013287 x cotangent Hc, Ha (see Sun, above)
G}= Parallax = moon's Horizontal Parallax (0.970496) x cosine Hc, H
H=1)40.091486 + ( (cot 40.091486 ' x 0.013287) - (cos 40.091486 }\mp@subsup{}{}{\circ}\times0.970496)=39.364824 % (Ha1
    2) 39.364824* - (cot 39.364824 ' }\times0.013287)+(\operatorname{cos 39.364824 x 0.970496) = 40.098940}\mp@subsup{}{}{\circ
    3) 40.098940 - 40.091486 (Hc) = 0.007454 
    4) 39.364824 }\mp@subsup{}{}{\circ}-0.007454\mp@subsup{}{}{\circ}=39.35736\mp@subsup{9}{}{\circ}=\textrm{Ha}
```



```
    6) 40.091562-40.091486 }\mp@subsup{}{}{\circ}(\textrm{Hc})=0.000076\mp@subsup{}{}{\circ
    7) 39.357369 }\mp@subsup{}{}{\circ}-0.000076\mp@subsup{}{}{\circ}=39.357293 = Ha3
    8) 39.357293 - (cot 39.357293 }\times0.013287) + (cos 39.357293 ` x 0.970496) = 40.091486 ' = H
    Therefore the moon's apparent altitude (Ha) = 39.357293}\mp@subsup{}{}{\circ
```


Moon's Augmentation, Sun-Moon Observation No. 1
Augmentation $=\left(\operatorname{sine~Ha~x~}\right.$ ग $\left.^{\prime} S D\right) \div 60=\left(\operatorname{sine} 39^{\circ} 21^{\prime} 26^{\prime \prime} \times 15^{\prime} 52^{\prime \prime}\right) \div 60=0.002795^{\circ}=10.1^{\prime \prime}$

Apparent Angular Distance of Sun and Moon
(Sextant distance - index error + sun's semidiameter + moon's semidiameter + moon's augmentation)
$49^{\circ} 46^{\prime} 12^{\prime \prime} \quad$ average distance by sextant

- $0^{\circ} 08^{\prime} 45^{\prime \prime}$ sextant's index error
$49^{\circ} 37^{\prime} 27^{\prime \prime} \quad$ average distance corrected for index error
$+0^{\circ} 15^{\prime} 47{ }^{\prime \prime}$ sun's semidiameter
+0¹5'52" moon's semidiameter
$+0^{\circ} 00^{\prime} 10$ moon's augmentation
$50^{\circ} 09^{\prime} 16^{\prime \prime} \quad$ apparent sun-moon separation; 50.183875 at IE 7 '; 50.175531 at $7{ }^{\prime} 30$ "; 50.167198 at 8^{\prime}

LONGITUDE CALCULATIONS

LONGITUDE from LUNAR DISTANCE from the SUN - FIRST SET of OBSERVATIONS JULY 29, 1805 (page 4 of 5)

True separation of the Sun and the Moon, first set of observations - July 29, 1805
Patterson, Form V (modified)

Calculating the Longitude

```
48*45'25" x ; 21h y 
```

 \(49^{\circ} 56^{\prime} 35^{\prime \prime}>\quad 23 \mathrm{~h} 14 \mathrm{~m} 44.8 \mathrm{~s}\)
 50 ${ }^{\circ} 20^{\prime} 29^{\prime \prime} \mathrm{x}_{2}, 24 \mathrm{~h}_{2}$, \quad 15h50m06.2s
07h24m38.6s difference in time
$\frac{\mathrm{x} \quad 15}{111^{\circ} 09^{\prime} 39^{\prime \prime} \mathrm{W}} 111^{\circ} 10^{\prime} \mathrm{W}$ (should be $111^{\circ} 30^{\prime} 40^{\prime \prime}$)

[^3]
LONGITUDE CALCULATIONS

LONGITUDE from LUNAR DISTANCE from the SUN - FIRST SET of OBSERVATIONS JULY 29, 1805 (page 5 of 5)

True separation of the Sun and the Moon, first set of observations - July 29, 1805
Jean Borda's Method (1787), modified to use RPN calculator

A	$=$ ग's Apparent Altitude $=$	$39^{\circ} 21^{\prime} 26{ }^{\prime \prime}$	m
B	= \odot 's Apparent Altitude $=$	$35^{\circ} 47{ }^{\prime \prime} 0{ }^{\prime \prime}$	s
C	= Apparent Distance $=$	5009'16"	d
D	= っ's True alt =	$40^{\circ} 05^{\prime 2} 2{ }^{\prime \prime}$	M
E	= ¢'s True alt $=$	$35^{\circ} 46$ '05"	S
F	$=(A+B+C) \div 2=$	62*38'53"	$(m+s+d) \div 2$
G	$=(A+B-C) \div 2=$	12*29'37"	$(m+s-d) \div 2$
H	$=(D+E) \div 2=$	$37^{\circ} 55^{\prime} 47{ }^{\prime \prime}$	$(M+S) \div 2$
I $=\operatorname{cosin} e^{-1} \sqrt{ }-$ secant $A \times$ secant $B \times \operatorname{cosine} D \times \operatorname{cosine} E \times \operatorname{cosine} F \times \operatorname{cosine} G$ $=\operatorname{cosine} e^{-1} \sqrt{ }-1.293314 \times 1.232707 \times 0.765017 \times 0.811390 \times 0.459455 \times 0.976320=$ $=\operatorname{cosin} e^{-1} \sqrt{ }-0.443915=\operatorname{cosine}^{-1}$ of $0.666270=48^{\circ} 13^{\prime} 13^{\prime \prime}$			
$J=\operatorname{sine}(\mathrm{I}+\mathrm{H})=\operatorname{sine} 86^{\circ} 09^{\prime} 00 \prime=0.997668$			
$\mathrm{K}=\operatorname{sine}(\mathrm{I}-\mathrm{H})=\operatorname{sine} 10^{\circ} 17^{\prime} 25.6^{\prime \prime}=0.178638$			
	$=\operatorname{sine}^{-1} \sqrt{-}(\mathrm{J} \times \mathrm{K})=\sin ^{-1}$	0.178221	$22163=24.971197^{\circ}=24^{\circ} 58^{\prime}$

True Distance $=2 \mathrm{~L}=2 \times 24^{\circ} 58^{\prime} 20^{\prime \prime}=\quad 49.942393^{\circ}=49^{\circ} 56^{\prime} 33^{\prime \prime}$

```
48*45'25" x c, 21h y m;
```

 49ํ 56'33" >

23 h 14 m 41 s	Greenwich Apparent Time
$\frac{15 \mathrm{~h} 50 \mathrm{~m} 06 \mathrm{~s}}{07 \mathrm{~h} 24 \mathrm{~m} 35 \mathrm{~s}}$	average Local Apparent Time of observation 07s difference in time
$\frac{\mathrm{x} \quad 15}{111^{\circ} 08^{\prime} 45^{\prime \prime}}$	degrees of longitude per hour $111^{\circ} 09^{\prime}$ west longitude (should be $111^{\circ} 30^{\prime} 40^{\prime \prime}$)

Note: using a Local Apparent Time of 15 h 50 m 10.7 s (see Local Time - Summary) yields a longitude of $111^{\circ} 07{ }^{\prime} 37^{\prime \prime}$ W.

LONGITUDE CALCULATIONS

LONGITUDE from LUNAR DISTANCE from the SUN - SECOND SET of OBSERVATIONS JULY 29, 1805 (page 1 of 5)

	Time	Distance	Time	Distance
	hm s	- '	h m s	- ' "
P.M.	44525	495400	45044	495645
	44637	495445	45136	495715
	44740	495515	45236	495745
	44852	495545	45337	495800
	44947	495615	45436	495815

Calculations for Longitude from Lunar Distance from the Sun, second set of observations - July 29, 1805

Average time by chronometer: 4:50:09.0; average separation by sextant: $49^{\circ} 56{ }^{\prime} 24.0^{\prime \prime}$.
A plot of the data suggests 4:49:09.6 and $49^{\circ} 55^{\prime} 58.1^{\prime \prime}$ (values $1-8$ only),
True Time of Sun-Moon Observation No. 2 (see LOCAL TIME CALCULATIONS - Summary)

ave chrono	fast LAT	true LAT	$111^{\circ} \mathrm{W}$	GAT	Eq of Time	GMT
16:49:09.6	$00: 33: 05.9$	$16: 16: 03.7$	+7 h 24 m	$23: 40: 03.7$	+06 m 02.5 s	$23: 46: 06.2$

Sun - Moon Data from Nautical Almanac calculated for average time of second set of observations

RA Sun 29th	08 h 32 m 49.6 s	Dec Sun 29th	$+18^{\circ} 50^{\prime} 01^{\prime \prime}$	SD Sun 25th	$15^{\prime} 46.7^{\prime \prime}$
RA Sun 30th	08 h 36 m 44.5 s	Dec Sun 30th	$+18^{\circ} 35^{\prime} 44^{\prime \prime}$	SD Sun 32nd	$15^{\prime} 47.5^{\prime \prime}$
RA Sun obs2	08 h 34 m 43.8 s	Dec Sun obs2	$+18^{\circ} 43^{\prime} 04^{\prime \prime}$	SD Sun obs2	$15^{\prime} 47.2^{\prime \prime}$
RA Moon 29th $12 \mathrm{~h} 168^{\circ} 36^{\prime}$	$=11 \mathrm{~h} 14 \mathrm{~m} 24 \mathrm{~s}$	Dec Moon 29th 12h	$0^{\circ} 12^{\prime} \mathrm{S}$		
RA Moon 29th $24 \mathrm{~h} 174^{\circ} 48^{\prime}$	$=11 \mathrm{~h} 39 \mathrm{~m} 12 \mathrm{~s}$	Dec Moon 29th 24 h	$3^{\circ} 08^{\prime} \mathrm{S}$		
RA Moon at obs 2	$174^{\circ} 37^{\prime} 42^{\prime \prime}$	$=11 \mathrm{~h} 38 \mathrm{~m} 31 \mathrm{~s}$		Dec Moon at obs2	$-3^{\circ} 03^{\prime}$

SD Moon 29th 12h 15'59"	HP Moon 29th 12h	58'40"	Eq of Time 29th	+6:03.3
SD Moon 29th 24h 15'52"	HP Moon 29th 24h	58'12"	Eq of Time 30th	+6:01.6
SD Moon at obs 2 15'52.2"	HP Moon at obs 2	58'12.8"	Eq of Time at obs	+6:02.5

RA = right ascension
Dec $=$ declination
SD = semidiameter
HP = horizontal parallax
$\mathrm{Eq}=$ equation
obs = observation
True Altitude of the Sun's Center, second set of Sun-Moon observations
$A=$ Latitude: average of meridian observations July 28 and 29, to nearest $30^{\prime \prime}=\quad 45^{\circ} 51^{\prime} 00^{\prime \prime}$
$B=$ Sun's Declination at the time of the observation $18^{\circ} 43^{\prime} 04^{\prime \prime}$
C $=$ Sun's Hour Angle at the time of observation $=4: 16: 03.7^{1} \mathrm{pm} \times 15=\quad 64^{\circ} 00^{\prime} 55.5^{\prime \prime}$
$\mathrm{D}=$ tangent 1 of (tangent $\mathrm{B} \times$ secant C$)=$
$=$ tangent -1 of $(0.338827 \times 2.282431)=0.773350=37^{\circ} 43^{\prime} 00^{\prime \prime}$
$E^{1}=A \pm D=45^{\circ} 51^{\prime}-37^{\circ} 43^{\prime}=\quad 8^{\circ} 08^{\prime}$
$F=$ sine -1 of (sine $B \times$ cosecant $D \times$ cosine $E)=$
$=\operatorname{sine}-1$ of $(0.320907 \times 1.634636 \times 0.989942)=0.519289=$ True Altitude $(\mathrm{Hc})=31.284601^{\circ}$
$31^{\circ} 17{ }^{\prime} 05^{\prime \prime}$

[^4]
LONGITUDE CALCULATIONS

LONGITUDE from LUNAR DISTANCE from the SUN - SECOND SET of OBSERVATIONS JULY 29, 1805 (page 2 of 5)

Apparent ("observed") Altitude of the Sun's Center
$\mathrm{G}_{1}=$ Refraction $(\mathrm{R})=\left[\left(983 \mathrm{x}\right.\right.$ inches $\mathrm{Hg} \div\left(460+\mathrm{t}^{\circ} \mathrm{F}\right) \mathrm{x}=$ cotangent Hc (1st trial), then Ha afterwards
$=\left\{\left[(983 \times 25.79) \div\left(460+80^{\circ}\right]\right\} \div 3600\right\} \times \operatorname{cot~Hc}$, then $\mathrm{Ha} ; \mathrm{G}_{1}=0.013041^{\circ} \times \cot \mathrm{Hc}, \mathrm{Ha}$
$\mathrm{G}_{2}=$ Parallax $(\mathrm{P})=[(8.794 \div 1.015 \mathrm{AU}) \div 3600] \times \cos \mathrm{Hc}$ (1st trial), then Ha afterwards
$(8.664 \div 3600) \times \operatorname{cos~Hc,~Ha;~} \mathrm{G}_{2}=0.002407^{\circ} \times \mathrm{Hc}, \mathrm{Ha}$
$H=1) 31.284601^{\circ}+\left(\cot 31.284601^{\circ} \times 0.013041\right)-\left(\cos 31.284601^{\circ} \times 0.002407\right)=31.304006^{\circ}(\mathrm{Ha} 1)$
2) $31.304006^{\circ}-\left(\cot 31.304006^{\circ} \times 0.013041\right)+\left(\cos 31.304006^{\circ} \times 0.002407\right)=31.284617^{\circ}$
3) $31.284617^{\circ}-31.284601^{\circ}(\mathrm{Hc})=0.000016^{\circ}$
4) $31.304006^{\circ}-0.000016^{\circ}=31.303990^{\circ}=\mathrm{Ha} 2$
5) $31.303990^{\circ}-\left(\cot 31.303990^{\circ} \times 0.013041\right)+\left(\cos 31.303990^{\circ} \times 0.002407\right)=31.284601^{\circ}=\mathrm{HC}$

Therefore sun's apparent altitude $(\mathrm{Ha})=$
31.303990°
$\Delta h \nu=31.3039990^{\circ}-31.284601^{\circ}=0.019389^{\circ}$
31¹8'14"

Moon's Hour Angle at Time of Observation

1. Sun's Right Ascension at time of the observation $=$

08h34m43.8s
2. Local Apparent Time of the observation, $\mathrm{pm}=$

04 h 16 m 03.7 s
3. Sum
4. Moon's Right Ascension at time of the observation

12 h 50 m 47.5 s
5. Moon's Hour Angle as Hour

11 h 38 m 31.0 s
01h12m16.5s
True Altitude of the Moon's Center for Sun-Moon Observation No. 2
$A=$ Latitude: average of meridian observations July $28 \& 29$, to nearest $30^{\prime \prime}=45^{\circ} 51^{\prime}$
$B=$ Moon's Declination at the time of the observation $=-3^{\circ} 03^{\prime}=$
C = Moon's Hour Angle as Angle $=1 \mathrm{~h} 12 \mathrm{~m} 16.5 \mathrm{~s} \times 15=18^{\circ} 04^{\prime} 07.5^{\prime \prime}=\quad 18.068750$
$D=$ cotangent 1 of (cotangent $B \times$ cosine C)
$=$ cotangent -1 of $(-18.767754 \times 0.950685)=-17.842223=-3.207891=\quad-3^{\circ} 12^{\prime} 28^{\prime \prime}$
$E^{1}=A \pm D=45^{\circ} 51^{\prime}-3^{\circ} 12^{\prime} 28^{\prime \prime}=49.057891=$
$49^{\circ} 03^{\prime} 28^{\prime \prime}$
$F=$ cosecant- 1 of (cosecant $B x$ sine $D \times \sec$ nt E)
$=$ cosecant- 1 of $(-18.794377 \times-0.055961 \times 1.526024)=-1.604946=$ True Alt $(\mathrm{Hc}) \quad 38.540971^{\circ}$
$38^{\circ} 32^{\prime} 275^{\prime \prime}$

1. Add (+) if A and B are of different signs or C is greater than 90°, otherwise subtract (-).

Apparent ("observed") Altitude of Moon's Center
$\mathrm{G}_{1}=$ Refraction $(\mathrm{R})=0.013041 \times$ cotangent Hc, Ha (see Sun, above)
$\mathrm{G}_{2}=$ Parallax $(\mathrm{P})=$ moon's Horizontal Parallax $(0.970215) \times$ cosine Hc, Ha
$\mathrm{H}=1) 38.540971^{\circ}+\left(\cot 38.540971^{\circ} \times 0.013041\right)-\left(\cos 38.540971^{\circ} \times 0.970215\right)=37.798476^{\circ}(\mathrm{Ha} 1)$
2) $37.798476^{\circ}-\left(\cot 37.798476^{\circ} \times 0.013041\right)+\left(\cos 37.798476^{\circ} \times 0.970215\right)=38.548298^{\circ}$
3) $38.548298^{\circ}-38.540971^{\circ}(\mathrm{Hc})=0.007327^{\circ}$
4) $37.798476^{\circ}-0.007327^{\circ}=37.791148^{\circ}=\mathrm{Ha} 2$
5) $37.791148^{\circ}-\left(\cot 37.791148^{\circ} \times 0.013041\right)+\left(\cos 37.791148^{\circ} \times 0.970215\right)^{\circ}=38.541043^{\circ}$
6) $38.541043^{\circ}-38.540971^{\circ}(\mathrm{Hc})=0.000072^{\circ}$
7) $37.791148^{\circ}-0.000076^{\circ}=37.791077^{\circ}=\mathrm{Ha} 3$
8) $37.791077^{\circ}-\left(\cot 37.791077^{\circ} \times 0.013041\right)+\left(\cos 37.791077^{\circ} \times 0.970215\right)^{\circ}=38.540971^{\circ}=\mathrm{Hc}$

Therefore moon's apparent altitude (Ha) =
37.791077°
$\Delta h \nu=37.791077^{\circ}-38.540971^{\circ}=-0.749894^{\circ} \quad 37^{\circ} 47^{\prime} 28^{\prime \prime}$
Moon's Augmentation from its Apparent Altitude in Sun-Moon Observation No. 2
Augmentation ${ }^{\circ}=\left(\right.$ sine Ha x 土 's SD $\left.^{\prime}\right)=\left(\right.$ sine $\left.37^{\circ} 47^{\prime} 28^{\prime \prime} \times 15^{\prime} 52^{\prime \prime}\right) \div 60=0.002701^{\circ}=9.7^{\prime \prime}$

LONGITUDE CALCULATIONS

LONGITUDE from LUNAR DISTANCE from the SUN - SECOND SET of OBSERVATIONS JULY 29, 1805 (page 3 of 5)

Correct observed distance for Observation No. 2 for index error, semidiameters and augmentation Observed distance minus index error, plus sun's semidiameter + moon's semidiameter + augmentation
$49^{\circ} 55^{\prime} 58.1^{\prime \prime}$ observed average

- 8'45" sextant's index error

49ำ47'13"

+ 15'47" sun’s semidiameter
+ 15'52" moon’s semidiameter
+ 00'10" moon's augmentation
$\overline{50^{\circ} 19^{\prime} 02^{\prime \prime}}$ apparent sun-moon separation

LONGITUDE CALCULATIONS

LONGITUDE from LUNAR DISTANCE from the SUN - SECOND SET of OBSERVATIONS July 29, 1805 (page 4 of 5)

True separation of the Sun and the Moon, second set of observations - July 29, 1805
Patterson, Form V (modified)

A $=$ Apparent separation of moon's center from sun's center	$50^{\circ} 19{ }^{\prime \prime} 02^{\prime \prime}$
$B=$ Apparent altitude of moon's center	$37^{\circ} 47^{\prime} 28^{\prime \prime}$
$\mathrm{C}=$ Apparent altitude of sun's center	$31^{\circ} 18{ }^{\prime \prime} 4^{\prime \prime}$
$D=1 / 2(B+C)=$	$34^{\circ} 32 \cdot 51{ }^{\prime \prime}$
$E^{1}=C \sim D=$	$03^{\circ} 14^{\prime} 37{ }^{\prime \prime}$
$F=A \div 2=50^{\circ} 19^{\prime} 02 \prime \div 2=$	$25^{\circ} 09^{\prime} 31^{\prime \prime}$
```G = tangent-1 of (tangent D x cotangent E x tangent F)= = tangent-1 of (0.688502 x 17.645321 }\times0.469682```	
$=$ tangent-1 of $5.706096=$	80º $03 ' 35.2 "$
$\mathrm{H}^{2}=\mathrm{F} \pm \mathrm{G}=$	$54^{\circ} 54{ }^{\prime} 04.2{ }^{\prime \prime}$
$\mathrm{I}^{3}=\mathrm{F} \pm \mathrm{G}=$	$105^{\circ} 13$ '06.2"
$\mathrm{K}=180 \div$ moon's horizontal parallax $=180 \div 58^{\prime} 12.7$ " $=180 \div 58.213^{\prime}=$	03.092093
$\mathrm{L}=180 \div$ cosecant $\mathrm{B} \times$ tangent $\mathrm{I} \times \mathrm{K}=$	
$180 \div(1.631895 \times-3.675945 \times 3.092093)=180 \div 18.54871=9.70418=$	00º $09^{\prime \prime} 42^{\prime \prime}$
$\mathrm{M}=$ refraction of $\mathrm{I}=[(983 \times 25.86) \div 530] \times \cot \left(180^{\circ}-\mathrm{I}\right)\left[74^{\circ} 47{ }^{\prime} 15^{\prime \prime}\right]=$	$00^{\circ} 00^{\prime \prime} 14^{\prime \prime}$
$\mathrm{N}=\mathrm{L}-\mathrm{M}=9^{\prime} 42{ }^{\prime \prime}-14{ }^{\prime \prime}=1$ st correction =	0009'28"
$\mathrm{O}^{4}=\mathrm{A} \pm \mathrm{N}=50^{\circ} 19^{\prime} 02{ }^{\prime \prime}-9^{\prime} 28^{\prime \prime}=$	$50^{\circ} 09^{\prime} 34^{\prime \prime}$
$\mathrm{P}=$ refraction and parallax of H for sun $=$	
$=r=[(983 \times 25.86) \div 530] \times \cot 54^{\circ} 54{ }^{\prime} 04{ }^{\prime \prime} ; p=$ cosine $\mathrm{H} \times 8.794$	
= $\mathrm{r}=33.7^{\prime \prime} ; \mathrm{p}=5.1^{\prime \prime} ; \mathrm{r}-\mathrm{p}=$ second correction $=28.6$ " $=$	00º $0{ }^{\prime} 29^{\prime \prime}$
$Q^{5}=O \pm P=50^{\circ} 09^{\prime} 34 \prime+29^{\prime \prime}=$	$50^{\circ} 10^{\prime} 03^{\prime \prime}$
$\mathrm{R}^{6}=3$ rd correction, from Table XIII (Tables Requisite)	0000'04"
$\mathrm{S}^{7}=$ true distance $=50^{\circ} 10^{\prime} 02^{\prime \prime}+4^{\prime \prime}=$	$50^{\circ} 10^{\prime} 07{ }^{\prime \prime}$
$\mathrm{T}^{8}=$ preceding distance in Nautical Almanac (21h) $=$	$48^{\circ} 45^{\prime} 25^{\prime \prime}$
$\mathrm{U}^{8}=$ following time in Nautical Almanac (24h) $=$	$50^{\circ} 20^{\prime} 29^{\prime \prime}$


	Calculating the Longitude			
$48^{\circ} 45^{\prime} 25^{\prime \prime} \mathrm{x}_{1}, 21 \mathrm{~h} \mathrm{y}_{1}$,				
$50^{\circ} 10^{\prime} 07 "$			$>\quad$	23 h 40 m 22.3 s
:---				
$50^{\circ} 20^{\prime} 29^{\prime \prime} \mathrm{x}_{2}, 24 \mathrm{~h}_{2}$				

[^5]
## LONGITUDE CALCULATIONS

## LONGITUDE FROM LUNAR DISTANCE from the SUN - SECOND SET of OBSERVATIONS

 July 29, 1805 (page 5 of 5)True separation of the Sun and the Moon, second set of observations - July 29, 1805
Jean Borda's Method (1787), modified to use RPN calculator

A	= \'s Apparent Altitude =	$37^{\circ} 47^{\prime} 28^{\prime \prime}$	m
B	= ¢'s Apparent Altitude =	$31^{\circ} 18{ }^{\prime \prime} 14^{\prime \prime}$	s
C	= Apparent Distance $=$	$50^{\circ} 19{ }^{\prime \prime} 2^{\prime \prime}$	d
D	= ১'s True alt =	$38^{\circ} 32 \cdot 27.5^{\prime \prime}$	M
E	= ¢'s True alt $=$	$31^{\circ} 17^{\prime} 05^{\prime \prime}$	S
F	$=(A+B+C) \div 2=$	$59^{\circ} 42^{\prime} 22^{\prime \prime}$	$(m+s+d) \div 2$
G	$=(A+B-C) \div 2=$	09 ${ }^{\circ} 23^{\prime} 20^{\prime \prime}$	$(\mathrm{m}+\mathrm{s}-\mathrm{d}) \div 2$
H	$=(D+E) \div 2=$	$34^{\circ} 54{ }^{\prime} 44.5^{\prime \prime}$	$(M+S) \div 2$
$I$ $=\operatorname{cosine} e^{-1} \sqrt{ }-$ secant $A \times$ secant $B \times \operatorname{cosine} D \times \operatorname{cosine} E \times \operatorname{cosine} F \times \operatorname{cosine} G$    $=\operatorname{cosin} e^{-1} \sqrt{ }-1.265422 \times 1.170380 \times 0.782163 \times 0.854597 \times 0.504436 \times 0.986604=$    $=\operatorname{cosine}^{-1} \sqrt{ }-0.492685=\operatorname{cosin}^{-1} 0.701915=45.419131^{\circ}=45^{\circ} 25^{\prime} 09^{\prime \prime}$			
$J=\operatorname{sine}(\mathrm{I}+\mathrm{H})=\operatorname{sine} 80^{\circ} 19^{\prime} 55^{\prime \prime}=0.985797$			
$\mathrm{K}=\operatorname{sine}(\mathrm{I}-\mathrm{H})=\operatorname{sine} 10^{\circ} 30^{\prime} 23^{\prime \prime}=0.182343$			
	$=\sin ^{-1} \sqrt{ }$ ( $\left.J \times K\right)=\sin ^{-1}$	$0.179754=$	74 $=25.08571$

True Distance $=2 \mathrm{~L}=2 \times 25.085713^{\circ}=50.171425^{\circ}=50^{\circ} 10^{\prime} 17^{\prime \prime}$

$50^{\circ} 10^{\prime} 17^{\prime \prime} \quad 23 \mathrm{~h} 40 \mathrm{~m} 41.2 \mathrm{~s} \quad$ Greenwich Apparent Time

$50^{\circ} 20^{\prime} 29^{\prime \prime} \mathrm{x}_{2}, 24 \mathrm{~h}_{2}$ 16h16m03.7s average Local Apparent Time of observation 07 h 24 m 37.5 s difference in time | x $\quad 15$ |
| :---: |
| $111^{\circ} 09^{\prime 23 "}$ | degrees of longitude per hour $111^{\circ} 09^{\prime}$ west longitude

Note: using a LAT of 16 h 16 m 08.7 s (see Local Time - Summary) yields a longitude of $111^{\circ} 08^{\prime} 08^{\prime \prime} \mathrm{W}$

## LONGITUDE CALCULATIONS

## LONGITUDE from LUNAR DISTANCE from ANTARES <br> JULY 29, 1805 (page 1 of 5)

Observed time and Distance of „'s Western limb from $\alpha$ Antares, with Sextant $\star$ East

Time PM	Distance	Time PM	Distance
h m s	o		
84216	685600	90112	684600
85055	685230	90301	684530
85444	684945	90447	684500
85556	684900	90627	684400
85853	684715	90831	681345

Calculations for Longitude from Lunar Distance from Antares - 1805 July 29
Average time by chronometer: 8:58:58.2 PM; average separation by sextant: $68^{\circ} 47^{\prime} 52.5^{\prime \prime}$. A plot of times and distances, however, shows that the time for data set No. 1 probably should be 8 h 45 m 16 s , not 8 h 42 m 16 s and the distance for data set No. 10 should be $68^{\circ} 43^{\prime} 45^{\prime \prime}$, not $68^{\circ} 13^{\prime} 45^{\prime \prime}$. Owing to uncertainties regarding the correct values, however, these two data sets should not be used. In addition, the plot of times and distances for data sets 2 through 9 shows that from fata set No. 7 on, refraction is distorting the distances as the moon nears the horizon. The most reliable data sets are No. 2 through No. 6. The average of these values gives a chronometer time of 8 h 57 m 26.8 s p.m. and a sextant angular distance of $68^{\circ} 48^{\prime} 20^{\prime \prime}$.

True Time of the Antares-Moon observation (see LOCAL TIME CALCULATIONS - Summary)

Ave chrono	fast LAT	True LAT	$111^{\circ} \mathrm{W}$	GAT	Eq of Time	GMT
20:57:26.8	$00: 33: 00.9$	$20: 24: 25.9$	+7 h 24 m	$27: 48: 25.9$	+06 m 02.2 s	$03: 54: 28.130$ th

Sun - Moon Data from Nautical Almanac Calculated for time of Antares-Moon observation

RA Sun 29th	8h32m49.6s	Dec Sun 29th	+18 ${ }^{\circ} 50 \cdot 01^{\prime \prime}$	SD Sun 25th	15'46.7"
RA Sun 30th	8 h 36 m 44.5 s	Dec Sun 30th	+18 ${ }^{\circ} 35^{\prime} 44{ }^{\prime \prime}$	SD Sun 32nd	15'47.5"
RA Sun obs	8h35m24.3s	Dec Sun obs	+18* 40 '37"	SD Sun obs	15'47.2"
RA Moon 29th	4h $174{ }^{\circ} 48^{\prime}$	$=11 \mathrm{~h} 39 \mathrm{~m} 12 \mathrm{~s}$	Dec	on 29th 24h	$-3^{\circ} 08^{\prime}$
RA Moon 30th	2h $180^{\circ} 56^{\prime}$	$=12 \mathrm{~h} 03 \mathrm{~m} 44 \mathrm{~s}$	Dec	on 30th 12h	$-6^{\circ} 00^{\prime}$
RA Moon at ob	$176{ }^{\circ} 44^{\prime} 45^{\prime}$	$=11 \mathrm{~h} 46 \mathrm{~m} 59 \mathrm{~s}$	Dec	on at obs	$-4^{\circ} 02^{\prime} 32{ }^{\prime \prime}$


SD Moon 29th 24h 15'52"	HP Moon 29th 24h	$58^{\prime} 12^{\prime \prime}$	EqT 29th $+6: 03.3$
SD Moon 30th 12h 15'44"	HP Moon 30th 12h	$57^{\prime} 44^{\prime \prime}$	EqT 30th $+6: 01.6$
SD Moon at obs $15^{\prime} 49.46 "$	HP Moon at obs	$58^{\prime \prime} 03.1 "$	EqT obs $+6: 02.2$

```
RA = right ascension HP = horizontal parallax
Dec = declination Eq = equation
SD = semidiameter obs = observation
```

Right Ascension (RA) and Declination (DEC) of Antares 1805 July 30
Tables Requisite: 1805 January 1, $R A=16 \mathrm{~h} 17 \mathrm{~m} 28 \mathrm{~s}$, annual variation $=+3.64 \mathrm{~s}$ July $30=0.575$ year $x+3.64 \mathrm{~s}$ per year $=+2.1 \mathrm{~s}+16 \mathrm{~h} 17 \mathrm{~m} 28 \mathrm{~s}=$ 16h17m30s Tables Requisite: 1805 January 1: DEC $=-25^{\circ} 59^{\prime} 05^{\prime \prime}$, annual variation $=+8.7^{\prime \prime}$ July $30=0.575$ year $x+8.7^{\prime \prime}$ per year $=+5.0^{\prime \prime}+-25^{\circ} 59^{\prime} 05^{\prime \prime}=$
$-25^{\circ} 59^{\prime} 10^{\prime \prime}$

## LONGITUDE CALCULATIONS

## LONGITUDE from LUNAR DISTANCE from ANTARES JULY 29, 1805 (page 2 of 5) <br> Hour Angle of Antares and Moon

Antares		Moon
08h35m24.3s	Sun's Right Ascension at time of the observation	08h35m24.3s
08 h 24 m 25.9 s	Local Apparent Time of the observation, pm $=$	$\frac{08 \mathrm{~h} 24 \mathrm{~m} 25.9 \mathrm{~s}}{16 \mathrm{~h} 59 \mathrm{~m} 50.2 \mathrm{~s}}$
16 h 59 m 50.2 s	Sum = Right Ascension of Meridian	11 h 46 m 59 s
16 h 17 m 30 s	Right Ascension at time of the observation	05 h 12 m 51.2 s

## True Altitude of Antares for the Antares-Moon observation



1. Add $(+)$ if declination and latitude are of different signs or C is greater than $90^{\circ}$.

Apparent ("observed") Altitude of Antares
$\mathrm{G}_{1}=$ Refraction $=\left\{\left[(983 \times 25.79\right.\right.$ inches Hg$\left.\left.) \div\left(460+60^{\circ}\right)\right] \div 3600\right\} \times \cot \mathrm{Hc}$ (1st trial), then Ha afterwards $\mathrm{R}^{\circ}=[(26797 \div 520) \div 3600] \times$ cotangent Hc , then $\mathrm{Ha} ; \mathrm{G}_{1}=0.013542 \mathrm{x}$ cot Hc , Ha
$\mathrm{H}=1$ ) $17.522688^{\circ}+\left(\right.$ cotangent $\left.17.522688^{\circ} \times 0.013542\right)=\mathrm{Ha}=17.565579^{\circ}$
2) $17.565579^{\circ}-\left(\right.$ cotangent $\left.17.565579^{\circ} \times 0.013542\right)=17.522800^{\circ}$
3) $17.522800^{\circ}-17.522688^{\circ}(\mathrm{Hc})=0.000112^{\circ}$
4) $17.565579^{\circ}-0.000112^{\circ}=17.565467^{\circ}=\mathrm{Ha} 2$
5) $17.565467^{\circ}-\left(\cot 17.565467^{\circ} \times 0.013542\right)=\quad 17.522688^{\circ}=\mathrm{Hc}$

Therefore apparent altitude of Antares $(\mathrm{Ha})=\quad 17.565467^{\circ}$
$\Delta h \star=17.565467^{\circ}-17.522688^{\circ}=+0.042779^{\circ} \quad 17^{\circ} 33^{\prime} 56^{\prime \prime}$
True Altitude of the Moon's Center for the Antares-Moon observation

	Latitude: meridian observations July 28 and 29 (to nearest 30") =	$45^{\circ} 51^{\prime}=$	45.850000
	Moon's Declination at the time of the observation =	$-4^{\circ} 02.5{ }^{\prime}$	-4.041667
	Moon's Hour Angle as an angle $=5 \mathrm{~h} 12 \mathrm{~m} 51.2 \mathrm{~s} \times 15=$	$78^{\circ} 12^{\prime \prime} 48^{\prime \prime}$	78.213333
	cotangent ${ }^{-1}($ cotangent $B \times$ cosine $C)=$   cotangent ${ }^{-1}(-14.152754 \times 0.204268)=-2.890958=$	-1904'51"	-19.080813 ${ }^{\circ}$
	A $\pm$ D $=45^{\circ} 51^{\prime}--19^{\circ} 04^{\prime} 51^{\prime \prime}=$	$64^{\circ} 55^{\prime} 51{ }^{\prime \prime}$	$64.930813^{\circ}$
	cosecant ${ }^{-1}$ of (cosecant $B \times$ sine $D \times$ secant $E$ )   cosecant $^{-1}$ of $(-14.188039 \times 0.326901 \times 2.360092)=-10.946318=$	True Alt (Hc)	$\begin{aligned} & 5.241559^{\circ} \\ & 5^{\circ} 144^{\prime} 30^{\prime \prime} \end{aligned}$

1. Add (+) if declination and latitude are of different signs or C is greater than $90^{\circ}$.

## LONGITUDE CALCULATIONS

## LONGITUDE from LUNAR DISTANCE from ANTARES

JULY 29, 1805 (page 3 of 5)
Apparent ("observed") Altitude of the Moon's Center at observation


Moon's Augmentation from its Apparent Altitude in the Antares-Moon observation

Augmentation $=($ sine Hax ১'s SD $) \div 60=\left(\operatorname{sine} 4^{\circ} 266^{\prime} 54 \prime \times 0.15^{\prime} 49.5{ }^{\prime \prime}\right) \div 60=$		$0.000341^{\circ}=1.2 "$
	Apparent Antares-Moon Distance	
Observed distance, minus index error, minus (moon's semidiameter + augmentation) (far limb)		
68* $48^{\prime} 20^{\prime \prime}$	sextant observed distance	
- 8'45"	sextant's index error	
$68^{\circ} 39^{\prime} 35^{\prime \prime}$		
- $0^{\circ} 15^{\prime} 49.5{ }^{\prime \prime}$	moon's semidiameter (far limb)	
-0 $0^{\circ} 00^{\prime} 01{ }^{\prime \prime}$	augmentation (far limb)	
$68^{\circ} 23^{\prime} 44.5^{\prime \prime}$	apparent separation of moon and Antares	

## LONGITUDE CALCULATIONS

## LONGITUDE from LUNAR DISTANCE from ANTARES July 29, 1805 (page 4 of 5)

True separation of Antares and the Moon - July 29, 1805
Patterson, Form V (modified)

A = Apparent separation of moon's center from Antares	$68^{\circ} 23{ }^{\prime} 44.5^{\prime \prime}$
$B=$ Apparent altitude of moon's center	$04^{\circ} 27^{\prime} 03^{\prime \prime}$
$\mathrm{C}=$ Apparent altitude of Antares	$17^{\circ} 33^{\prime} 56{ }^{\prime \prime}$
$D=1 / 2(B+C)=$	$11^{\circ} 00^{\prime} 29.5{ }^{\prime \prime}$
$E^{1}=C \sim D=$	$06^{\circ} 34{ }^{\prime} 53.8{ }^{\prime \prime}$
$F=A \div 2=$	$34^{\circ} 11^{\prime} 52.2{ }^{\prime \prime}$
$G=$ tangent 1 of (tangent $D \times$ cotangent $E$ tangent-1 of $(0.194529 \times 8.692432 \times$	
tangent-1 of $1.145500=$	$48^{\circ} 52^{\prime} 47.7{ }^{\prime \prime}$
$\mathrm{H}^{2}=\mathrm{F} \pm \mathrm{G}=$	$83^{\circ} 04^{\prime} 39^{\prime \prime}$
$\mathrm{I}^{3}=\mathrm{F} \pm \mathrm{G}=$	$14^{\circ} 40{ }^{\prime} 54.5{ }^{\prime \prime}$
$\mathrm{K}=180 \div$ moon's horizontal parallax $\left.=180 \div 58{ }^{\prime} 03.1{ }^{\prime \prime}=180 \div 58.05\right)=$	03.100686
$\begin{aligned} \mathrm{L} & =180 \div(\text { cosecant } B \times \text { tangent } I \times K)= \\ & =180 \div(12.886001 \times 0.262005 \times 3.100686)=10.468546 \end{aligned}$	
$=180 \div 10.468546=17.194365{ }^{\prime}=$	00¹7'12"
$M=$ refraction of $\mathrm{I}=[(983 \times 25.86) \div 510] \times$ cotangent $14^{\circ} 40^{\prime} 54.5{ }^{\prime \prime}=190 "=$	0003'10"
$\mathrm{N}=\mathrm{L}-\mathrm{M}=17^{\prime} 12^{\prime \prime}-3^{\prime} 10^{\prime \prime}=1$ st correction =	$00^{\circ} 14^{\prime} 02{ }^{\prime \prime}$
$\mathrm{O}^{4}=\mathrm{A} \pm \mathrm{N}=68^{\circ} 23^{\prime} 44.5{ }^{\prime \prime}-14^{\prime} 02{ }^{\prime \prime}=$	$68^{\circ} 09^{\prime} 42.5^{\prime \prime}$
$\mathrm{P}=$ refraction of H for star $=$	
$=r=[(983 \times 25.86) \div 510] \times$ cotangent 83.04'39" $=$	0000'06"
$Q^{5}=O \pm P=68^{\circ} 09^{\prime} 42.5^{\prime \prime}-6^{\prime \prime}=$	$68^{\circ} 09{ }^{\prime} 36.5{ }^{\prime \prime}$
$\mathrm{R}^{6}=$ correction from Table XIII (Tables Requisite)	$00^{\circ} 00^{\prime} 02{ }^{\prime \prime}$
$\mathrm{S}^{7}=$ true distance $=Q \pm \mathrm{R}=68^{\circ} 09^{\prime} 36{ }^{\prime \prime}+2^{\prime \prime}$	$68^{\circ} 09{ }^{\prime} 38^{\prime \prime}$
$\mathrm{T}^{8}=$ preceding distance in Nautical Almanac (27h) $=$	$68^{\circ} 36^{\prime} 37{ }^{\prime \prime}$
$\mathrm{U}^{8}=$ following time in Nautical Almanac (30h) $=$	$66^{\circ} 55^{\prime} 14{ }^{\prime \prime}$

Calculating the Longitude

```
68`36'37" x (27h y
```

        68ㅇํ \(09^{\prime \prime}>\quad 27 h 47 m 54.4 s\)
    $66^{\circ} 55^{\prime} 14^{\prime \prime} \mathrm{x}_{2} ; 30 \mathrm{~h} \mathrm{y}_{2} \quad$ 20h24m25.9s
07 h 23 m 28.5 s difference in time
$\frac{\mathrm{x} \quad 15}{110^{\circ} 52^{\prime} 08^{\prime} \mathrm{W}}$
$110^{\circ} 52 \mathrm{~W}$ (should be $111^{\circ} 30^{\prime} 40^{\prime \prime}$ )

[^6]
## LONGITUDE CALCULATIONS

## LONGITUDE from LUNAR DISTANCE from ANTARES JULY 29, 1805 (page 5 of 5)

True separation of Antares and the Moon - July 29, 1805
Jean Borda's Method (1787), modified to use RPN calculator

A $=$ 又's Apparent Altitude $=$	04 ${ }^{\circ} 27^{\prime} 03^{\prime \prime}$	m
B $=\star$ 's Apparent Altitude $=$	$17^{\circ} 33^{\prime} 56^{\prime \prime}$	S
C = Apparent Distance $=$	$68^{\circ} 23^{\prime} 44.5^{\prime \prime}$	d
D = っ's True alt =	$05^{\circ} 14^{\prime} 30^{\prime \prime}$	M
$\mathrm{E}=\star$ 's True alt $=$	$17^{\circ} 31^{\prime} 22^{\prime \prime}$	S
$F=(A+B+C) \div 2=$	$45^{\circ} 12^{\prime} 21.8{ }^{\prime \prime}$	$(m+s+d) \div 2$
$G=(A+B-C) \div 2=$	23 ${ }^{\circ} 11^{\prime} 22.8{ }^{\prime \prime}$	$(m+s-d) \div 2$
$H=(D+E) \div 2=$	$11^{\circ} 22^{\prime} 56{ }^{\prime \prime}$	$(M+S) \div 2$
$\begin{aligned} \text { I } & =\text { cosine }{ }^{-1} \sqrt{ }-\text { secant } A \times \text { secant } B \times \text { cosine } D \times \operatorname{cosine} E \times \operatorname{cosine} F \times \operatorname{cosine} G \\ & =\operatorname{cosine}^{-1} \sqrt{ }-1.003025 \times 1.048908 \times 0.995818 \times 0953597 \times 0.704559 \times 0.919206= \\ & =\operatorname{cosine}^{-1} \sqrt{ }-0.647031=\operatorname{cosin}^{-1} 0.804382=36.449364^{\circ}=36^{\circ} 26^{\prime} 57.7^{\prime \prime} \end{aligned}$		
$J=\operatorname{sine}(I+H)=\operatorname{sine} 47^{\circ} 49^{\prime} 54^{\prime \prime}=0.741175$		
$\mathrm{K}=\operatorname{sine}(\mathrm{I}-\mathrm{H})=\operatorname{sine} 25^{\circ} 04^{\prime} 02{ }^{\prime \prime}=0.423680$		
True Distance $=2 \mathrm{~L}=2 \times 34.081785^{\circ}=68.163571^{\circ}=68^{\circ} 09^{\prime} 49{ }^{\prime \prime}$		
$68^{\circ} 36^{\prime} 37^{\prime \prime} \mathrm{x}_{1}, 27 \mathrm{~h} \mathrm{y}_{1} ;$		
66 ${ }^{\circ} 55^{\prime} 14{ }^{\prime \prime} \mathrm{x}_{2}, 30 \mathrm{~h} \mathrm{y}_{2}$	20h24m25.9s	average Local Apparent Time of observation
	07h23m09.1s	difference in time
	$\times \quad 15$	degrees of longitude per hour
	11047'16"	$110^{\circ} 47$ ' west longitude

Note: using a LAT of 20 h 24 m 35.5 s (see Local Time - Summary) yields a longitude of $110^{\circ} 44^{\prime} 52^{\prime \prime} \mathrm{W}$

## MAGNETIC DECLINATION CALCULATIONS

## MAGNETIC DECLINATION from COMPASS BEARING of the SUN - AM OBSERVATION

 JULY 29, 1805 (page 1 of 2)๑'s magnetic azimuth

Time by chrono-   meter	Azimuth by   circumferentor   $\circ$	Altitude of $\odot$ 's lower   limb with sextant   $\circ$
	h m s	

Calculations for Magnetic Declination from Compass Bearing of the Sun, AM Observation-July 29, 1805
Latitude
Average from sun's meridian altitude, 1805 July 28 and 29 (rounded to nearest $30 \prime$ ) $=45^{\circ} 51^{\prime \prime} 00^{\prime \prime}$
Average Chronometer Time of Observations
$8: 48: 09+8: 53: 57=17: 42: 06: \div 2=$
08:51:03

True Local Apparent Time of the Observation Average
Chronometer time of Local Noon, 1805 July $28=$

12:33:39.4
Chronometer time of Local Noon, 1805 July 29 as if the 28th ( $12 \mathrm{~h} 33 \mathrm{~m} 11.0 \mathrm{~s}+24 \mathrm{~h}$ ) 36:33:11.0
$12 \mathrm{~h} 33 \mathrm{~m} 39.4 \mathrm{~s} \mathrm{x}_{1}$, $12 \mathrm{~h} \mathrm{y}_{1}$ and $36 \mathrm{~h} 33 \mathrm{~m} 11.1 \mathrm{~s} \mathrm{x}_{2}, 36 \mathrm{~h} \mathrm{y}_{2}$
Solve for 32:51:03 (8:51:03 chronometer time of observation $+24 \mathrm{~h})=\quad$ 32:17:47.6
32:17:47.6-24h $=$ True Local Apparent Time of observation average $=\quad$ 08:17:47.6
Greenwich Apparent Time of Observation Average at Estimated $111^{\circ} \mathrm{W}$ Longitude
Time difference from $0^{\circ}$ longitude to $111^{\circ} \mathrm{W}=\quad$ 07:24:00
Local apparent time of observation average =
08:17:47.6
Estimated Greenwich Apparent Time of observation =
15:41:47.6

Sun's declination at Average Time of Observations
Sun's declination Greenwich Apparent Noon, 1805 July 29 =
+18 ${ }^{\circ} 50^{\prime} 01^{\prime \prime} \mathrm{N}$
Sun's declination Greenwich Apparent Noon, 1805 July $30=$
$+18^{\circ} 35^{\prime} 44^{\prime \prime} \mathrm{N}$
Sun's declination at 15:41:47.6 Greenwich Apparent Time $=\quad \quad+18^{\circ} 47^{\prime} 49^{\prime \prime} \mathrm{N}$
Altitude of Sun's Center
$73^{\circ} 59^{\prime} 07.5^{\prime \prime}$ observed double altitude of sun's lower limb; average

- $0^{\circ} 08^{\prime} 45^{\prime \prime}$ sextant's index error
$73^{\circ} 50^{\prime} 22.5^{\prime \prime}$ double altitude corrected for index error
$\div \quad 2$ divide by 2 (artificial horizon has doubled the angle read)
$36^{\circ} 55^{\prime} 11$ apparent altitude of sun's lower limb $=\mathrm{H}$
- $0^{\circ} 01^{\prime} 04.9 "$ refraction (see Latitude, footnote 1)
$+0^{\circ} 00^{\prime} 06.9 "$ parallax (see Latitude, footnote 2)
+0015'47.2" semidiameter
$37^{\circ} 10^{\prime} 00^{\prime \prime}$ true altitude of sun's center per this observation

```
Sun's Zenith Distance
Zenith distance \(=90^{\circ}-\) true altitude of center \(=90^{\circ}-37^{\circ} 10^{\prime} 00^{\prime \prime}=\quad 52^{\circ} 50^{\prime} 00^{\prime \prime}\)
```

Average Magnetic Bearing/Azimuth of the Sun
$\mathrm{N} 85^{\circ} \mathrm{E}+\mathrm{N} 86^{\circ} \mathrm{E}=\mathrm{N} 85.5^{\circ} \mathrm{E}=$ Azimuth $=$
$085.5^{\circ}$

## MAGNETIC DECLINATION CALCULATIONS

MAGNETIC DECLINATION from COMPASS BEARING of the SUN - AM OBSERVATION JULY 29, 1805 (page 2 of 2)

Sun's Azimuth at the Average Time of the AM Observation


## MAGNETIC DECLINATION CALCULATIONS

## MAGNETIC DECLINATION from COMPASS BEARING of the SUN - PM OBSERVATION JULY 29, 1805 (page 1 of 2)

Observed magnetic azimuth of the sun
Time by chrono- Azimuth by Altitude of $\odot$ 's lower
meter circumferentor limb by sextant.
h m s o - "
P.M. $50747 \quad$ S 72 W 554430

Calculations for Magnetic Declination from Compass Bearing of the Sun, AM Observation-July 29, 1805


## MAGNETIC DECLINATION CALCULATIONS

MAGNETIC DECLINATION from COMPASS BEARING of the SUN - PM OBSERVATION JULY 29, 1805 (page 2 of 2)

Sun's Azimuth at the Time of the Observation Average
sine $1 / 2$ azimuth $=\sqrt{\text { cosine } 1 / 2}$ (Latitude + Zenith Distance + Declination) $x$ sine $1 / 2$ (Lat + ZD - Dec) cosine Latitude x sine Zenith Distance


## MAGNETIC DECLINATION CALCULATIONS

## MAGNETIC DECLINATION from COMPASS BEARING of POLARIS JULY 29, 1805 (page 1 of 2)

Observed the azimuth of the Pole Star

Time by chronometer \begin{tabular}{l}
Azimuth by circumferentor <br>
h m <br>

P.M. | 927 |
| :--- | <br>

\hline

 

N $13^{\circ} \mathrm{W}$
\end{tabular}

Calculations for Magnetic Declination from Compass Bearing of Polaris - July 29, 1805


12:33:39.4 $\mathrm{x}_{1}, 12 \mathrm{y}_{1} ; 36: 33: 11.0 \mathrm{x}_{2 ;} 36 \mathrm{y}_{2 ;}$ solve for $45: 27: 00(21: 27+24 \mathrm{~h})=$	$44: 53: 59.6$
44:53:59.5 $-24 \mathrm{~h}=$ True Local Apparent time of observation $=$	$20: 53: 59.6$

Estimated Greenwich Apparent Time of the Observation
Estimated longitude $=111^{\circ} \mathrm{W}$
Time difference from $0^{\circ}$ longitude to $111^{\circ} \mathrm{W}=111^{\circ} \div 15=\quad$ 07:24:00.0
Local Apparent Time of observation $=\quad$ 20:53:59.6 Estimated Greenwich Apparent Time of observation $=\quad \overline{28: 17: 59.6}$ Hours since Greenwich noon 16:17:59.6

Right Ascension of the Sun at the Time of Observation
Sun's Right Ascension Greenwich Apparent Noon, 1805 July $30=8 \mathrm{~h} 36 \mathrm{~m} 44.5 \mathrm{~s}$
Sun's Right Ascension Greenwich Apparent Noon, 1805 July $29=\quad 8 \mathrm{~h} 32 \mathrm{~m} 49.6 \mathrm{~s}$
difference per day $\quad 0 \mathrm{~h} 03 \mathrm{~m} 54.9 \mathrm{~s}$
$\div \quad 24 \mathrm{~h}$
change per hour $\quad 9.79$ seconds
RA at obs $=9.79$ seconds $\times 16 \mathrm{~h} 18 \mathrm{~m}$ since noon $=2 \mathrm{~m} 39.6 \mathrm{~s}+8 \mathrm{~h} 32 \mathrm{~m} 49.6 \mathrm{~s}=\quad 8 \mathrm{~h} 35 \mathrm{~m} 29.2 \mathrm{~s}$
Look-up table 9.8 sec at $16 \mathrm{~h}=156.8 \mathrm{~s}+18 \mathrm{~m}=3 \mathrm{~s}=159.8 \mathrm{~s}=2 \mathrm{~m} 39.8 \mathrm{~s}+8 \mathrm{~h} 32 \mathrm{~m} 49.6 \mathrm{~s}=8 \mathrm{~h} 35 \mathrm{~m} 29.4 \mathrm{~s}$ Sun's RA at obs also $=12 \mathrm{x}_{1}, 8: 32: 49.6 \mathrm{y}_{1} ; 36 \mathrm{x}_{2}, 8: 36: 44.5 \mathrm{y} 2$; solve for $28: 17: 59.6=0 \mathrm{~h} 35 \mathrm{~m} 29.1 \mathrm{~s}$

Right Ascension (RA) and Declination (DEC) of Polaris for the Date of Observation
From Tables Requisite 1805 Jan 1; RA $=0 \mathrm{~h} 53 \mathrm{~m} 25 \mathrm{~s}$, annual variation $=+12.89 \mathrm{~s}$ July $30=0.575$ year $x+12.89$ s variation per year $=+7.4 \mathrm{~s}=\quad 00 \mathrm{~h} 53 \mathrm{~m} 32 \mathrm{~s}$

From Tables Requisite 1805 Jan 1: DEC $=88^{\circ} 15^{\prime} 50^{\prime \prime}$, annual variation $=+19.6^{\prime \prime}$
July $30=0.575$ year $x+19.6$ " variation per year $=+11.3 "$
$88^{\circ} 16^{\prime} 01^{\prime \prime}$

## MAGNETIC DECLINATION CALCULATIONS

## MAGNETIC DECLINATION from COMPASS BEARING of POLARIS JULY 29, 1805 (page 2 of 2)



## Azimuth of Polaris at the Time of Observation

		cosine Latit
Latitude =	$45^{\circ} 51{ }^{\prime} 00{ }^{\prime \prime}$	
Zenith Distance =	$44^{\circ} 47{ }^{\prime} 41^{\prime \prime}$	
Sum	90³8'41"	$90^{\circ} 38{ }^{\prime \prime} 4{ }^{\prime \prime}$
Declination =	+88 ${ }^{\circ} 16^{\prime} 01^{\prime \prime}$	$-88^{\circ} 16{ }^{\prime} 01^{\prime \prime}$
	178 ${ }^{\circ} 54{ }^{\prime \prime} 42^{\prime \prime}$	$2^{\circ} 22^{\prime} 40^{\prime \prime}$
	$\div 2$	$\div 2$
	89 ${ }^{\circ} 27^{\prime} 21^{\prime \prime}$	1¹1'20"

```
sine \(1 / 2\) azimuth \(=\sqrt{ }^{-}\left(\right.\)cosine \(89^{\circ} 27^{\prime} 21^{\prime \prime} x\) s sine \(1^{\circ} 11^{\prime} 20 \prime\) " \() \div\left(\right.\) cosine \(45^{\circ} 51^{\prime} 00^{\prime \prime} x\) sine \(\left.44^{\circ} 47^{\prime} 41^{\prime \prime}\right)\)
 \(=\sqrt{ }-(0.009497 \times 0.020749) \div(0.696539 \times 0.704569)\)
 \(=\sqrt{ }^{-} 0.000197 \div 0.490760\)
 \(=\sqrt{ }-0.000402=0.020038\)
\(\operatorname{sine}^{-1} 0.020038=1.148186^{\circ}=1 / 2\) azimuth
azimuth \(\quad=\quad 1.148186^{\circ} \times 2=2.296372^{\circ}=2^{\circ} 17^{\prime} 47^{\prime \prime}\)
\begin{tabular}{|c|c|c|}
\hline Observed Magnetic Bearing, 1805 July 29 & = & N \(13{ }^{\circ} \mathrm{W}\) \\
\hline Calculated Bearing (rounded) & = & \(\mathrm{N} 214^{\circ} \mathrm{E}\) \\
\hline Magnetic Declination per this observation & = & \(151 / 4^{\circ}\) East \\
\hline Magnetic Declination averaged from AM and PM with sun Observations & = & \(161 / 4{ }^{\circ}\) East \\
\hline Declination if Greenwich Apparent Time 28:18:10.1 (LAT 20:54:10.1) \(=\) & & ¹7'04"E = \\
\hline
\end{tabular}
```


[^0]:    1. Lewis would have used Tables Requisite. The equation used here to calculate the correction for refraction is: [( $983 \times$ Bar Pressure in inches $) \div\left(460+\right.$ Temp $\left.\left.^{\circ} \mathrm{F}\right)\right] \times$ cotangent $H$
    2. Lewis likely used Tables Requisite. The equation used here to calculate the correction for the sun's parallax is: $8.794 \times \operatorname{cosine~} \mathrm{H}$
    3. Sun's noon semidiameter at $0^{\circ}$ Iongitude: 25 July, $15^{\prime} 46.7^{\prime \prime} ; 1$ August, $15^{\prime} 47.5^{\prime \prime}$
    4. Sun's noon declination at $0^{\circ}$ longitude: 28 th, $+19^{\circ} 04^{\prime} 00^{\prime \prime} ; 29$ th, $+18^{\circ} 50^{\prime} 01^{\prime \prime}$ )
    5. Lewis mistakenly used an index error of $2^{\circ} 40^{\prime}$; this accounts for most of the error in his calculations.
[^1]:    1. Calculated from chronometer's noon error 28th and 29th from the Equal Altitudes observations then projecting by linear regression using the error on Local Mean Time and converting back to LAT.
    2. Calculated by linear regression from 1) the calculated Local Apparent Time of AM and PM observations of Equal Altitudes on the 29th and the noon error on the 29th, 2) the same as in (1) above plus the calculated LAT of the AM and PM observations for Magnetic declination. Then both (1) and (2) were averaged.
[^2]:    1. Add if Declination and Latitude are of different signs or C is greater than $90^{\circ}$
[^3]:    1. The symbol ~ means "absolute value".
    2. Add (+) if C is greater than B, if not subtract ( - ); therefore F - G.
    3. Subtract $(-)$ if $C$ is greater than $B$, if not add $(+)$; therefore $F+G$.
    4. Subtract (-) if H or I is greater than $90^{\circ}$; or H is greater than I ; therefore $\mathrm{A}-\mathrm{N}$.
    5. Add $(+)$ if H or I is greater than $90^{\circ}$; or H is less than I ; therefore $\mathrm{O}+\mathrm{P}$
    6. In Table VII find the correction of moon's altitude, then in Table XIII under the nearest degree to $Q$ at the top, find two numbers; one opposite to the nearest minute to moon's correction of altitude found as above, and the other opposite the nearest minute to first correction $(N)$ and the difference of these two numbers will be the third correction. This correction may, without sensible error, be generally omitted.
    7. Add (+) if $Q$ is less than $90^{\circ}$, if not, subtract $(-)=Q+R$
    8. T and U; These are to be found in Nautical Almanac from page 8th to page11th of the month opposite the day of the month and the sun or star from which the moon's distance was observed; taking out the two distances, which are next greater and next less than the true distance ( S ) calling that the preceding distance which comes first in the order of time and the other the following distance)
[^4]:    1. Add (+) if $A$ and $B$ are of different signs or $C$ is greater than $90^{\circ}$, otherwise subtract ( - ).
[^5]:    1. The symbol ${ }^{\sim}$ means "absolute value".
    2. Add $(+)$ if $C$ is greater than $B$, if not subtract $(-)$; therefore $F-G$.
    3. Subtract $(-)$ if $C$ is greater than $B$, if not add $(+)$; therefore $F+G$.
    4. Subtract $(-)$ if $H$ or $I$ is greater than $90^{\circ}$; or $H$ is greater than $I$; therefore $A-N$.
    5. Add $(+)$ if H or I is greater than $90^{\circ}$; or H is less than I ; therefore $\mathrm{O}+\mathrm{P}$
    6. In Table VII find the correction of moon's altitude, then in Table XIII under the nearest degree to $Q$ at the top, find two numbers; one opposite to the nearest minute to moon's correction of altitude found as above, and the other opposite the nearest minute to first correction $(N)$ and the difference of these two numbers will be the third correction. This correction may, without sensible error, be generally omitted. 7. Add (+) if $Q$ is less than $90^{\circ}$, if not, subtract $(-)=Q+R$
    7. T and $U$; These are to be found in Nautical Almanac from page 8 th to page 11 th of the month opposite the day of the month and the sun or star from which the moon's distance was observed; taking out the two distances, which are next greater and next less than the true distance $(S)$ calling that the preceding distance which comes first in the order of time and the other the following distance)
[^6]:    1. The symbol ~ means "absolute value".
    2. Add (+) if $C$ is greater than $B$, if not subtract ( - ); therefore $F+G$.
    3. Subtract (-) if $C$ is greater than $B$, if not add ( + ); therefore $F-G$.
    4. Subtract (-) if H or I is greater than $90^{\circ}$; or H is greater than I ; therefore $\mathrm{A}-\mathrm{N}$.
    5. Add $(+)$ if H or I is greater than $90^{\circ}$; or H is less than I ; therefore $\mathrm{O}-\mathrm{P}$
    6. In Table VII find the correction of moon's altitude, then in Table XIII under the nearest degree to $Q$ at the top, find two numbers; one opposite to the nearest minute to moon's correction of altitude found as above, and the other opposite the nearest minute to first correction $(N)$ and the difference of these two numbers will be the third correction. This correction may, without sensible error, be generally omitted.
    7. Add (+) if $Q$ is less than $90^{\circ}$, if not, subtract ( - ) $=Q+R$
    8. T and U; These are to be found in Nautical Almanac from page 8th to page11th of the month opposite the day of the month and the sun or star from which the moon's distance was observed; taking out the two distances, which are next greater and next less than the true distance ( S ) calling that the preceding distance which comes first in the order of time and the other the following distance)
